kth.sePublications

Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt251",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1348",{id:"formSmash:j_idt1348",widgetVar:"widget_formSmash_j_idt1348",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
#### Other links

Publisher's full textScopus
#### Authority records

Agram, Nacira
#### Search in DiVA

##### By author/editor

Agram, Nacira
##### By organisation

Mathematics (Dept.)
##### In the same journal

Acta Mathematica Scientia
On the subject

Mathematical Analysis
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1741",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[7,11,3,4,2,3,4,5,1,2]],title:"Visits for this publication",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:1658379'}],ticks:["Feb -23","Mar -23","Apr -23","May -23","Jun -23","Aug -23","Oct -23","Jan -24","May -24","Jun -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 111 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1901",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt213",{id:"formSmash:upper:j_idt213",widgetVar:"widget_formSmash_upper_j_idt213",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt220_j_idt223",{id:"formSmash:upper:j_idt220:j_idt223",widgetVar:"widget_formSmash_upper_j_idt220_j_idt223",target:"formSmash:upper:j_idt220:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Singular Control Of Stochastic Volterra Integral EquationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2022 (English)In: Acta Mathematica Scientia, ISSN 0252-9602, E-ISSN 1003-3998, Vol. 42, no 3, p. 1003-1017Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Springer Nature , 2022. Vol. 42, no 3, p. 1003-1017
##### Keywords [en]

Stochastic maximum principle, stochastic Volterra integral equation, singular control, backward stochastic Volterra integral equation, Hida-Malliavin calculus
##### National Category

Mathematical Analysis
##### Identifiers

URN: urn:nbn:se:kth:diva-312209DOI: 10.1007/s10473-022-0311-9ISI: 000784562000011Scopus ID: 2-s2.0-85128715046OAI: oai:DiVA.org:kth-312209DiVA, id: diva2:1658379
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt654",{id:"formSmash:j_idt654",widgetVar:"widget_formSmash_j_idt654",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt660",{id:"formSmash:j_idt660",widgetVar:"widget_formSmash_j_idt660",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt666",{id:"formSmash:j_idt666",widgetVar:"widget_formSmash_j_idt666",multiple:true});
##### Note

This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations, where the solution X-u,X-xi(t) =X(t) is given by X(t) = phi(t) + integral(t)(0) b (t, s, X(s), u(s)) ds + integral(t)(0) sigma (t, s, X(s), u(s)) dB(s) + integral(t )(0)h (t, s) d xi(s). Here dB(s) denotes the Brownian motion Ito type differential, xi denotes the singular control (singular in time t with respect to Lebesgue measure) and u denotes the regular control (absolutely continuous with respect to Lebesgue measure). Such systems may for example be used to model harvesting of populations with memory, where X(t) represents the population density at time t, and the singular control process xi represents the harvesting effort rate. The total income from the harvesting is represented by J(u, xi) = E[integral(T)(0) f(0)(t, X(t), u(t))dt + integral(T)(0) f(1)(t, X(t))d xi(t) + g(X(T))], for the given functions f(0), f(1) and g, where T > 0 is a constant denoting the terminal time of the harvesting. Note that it is important to allow the controls to be singular, because in some cases the optimal controls are of this type. Using Hida-Malliavin calculus, we prove sufficient conditions and necessary conditions of optimality of controls. As a consequence, we obtain a new type of backward stochastic Volterra integral equations with singular drift. Finally, to illustrate our results, we apply them to discuss optimal harvesting problems with possibly density dependent prices.

QC 20220516

Available from: 2022-05-16 Created: 2022-05-16 Last updated: 2022-06-25Bibliographically approved
doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1777",{id:"formSmash:j_idt1777",widgetVar:"widget_formSmash_j_idt1777",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1859",{id:"formSmash:lower:j_idt1859",widgetVar:"widget_formSmash_lower_j_idt1859",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1869_j_idt1876",{id:"formSmash:lower:j_idt1869:j_idt1876",widgetVar:"widget_formSmash_lower_j_idt1869_j_idt1876",target:"formSmash:lower:j_idt1869:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});