Increasing the use of hygienic high-touch surfaces with antimicrobial properties in health care and public spaces is one way to hinder the spread of bacteria and infections. This study investigates the antimicrobial efficacy and surface reactivity of commercial laminate and powder coated surfaces treated with silver-doped phosphate glass as antimicrobial additive towards two model bacterial strains, Escherichia coli and Bacillus subtilis, in relation to surface weathering and repeated cleaning. High-touch conditions in indoor environments were simulated by different extents of pre-weathering (repeated daily cycles in relative humidity at constant temperature) and simplified fingerprint contact by depositing small droplets of artificial sweat. The results elucidate that the antimicrobial efficacy was highly bacteria dependent (Gram-positive or Gram-negative), not hampered by differences in surface weathering but influenced by the amount of silver-doped additive. No detectable amounts of silver were observed at the top surfaces, though silver was released into artificial sweat in concentrations a thousand times lower than regulatory threshold values stipulated for materials and polymers in food contact. Surface cleaning with an oxidizing chemical agent was more efficient in killing bacteria compared with an agent composed of biologically degradable constituents. Cleaning with the oxidizing agent resulted further in increased wettability and presence of residues on the surfaces, effects that were beneficial from an antimicrobial efficacy perspective.
QC 20230328