kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Stacky Modifications and Operations in the Étale Cohomology of Number Fields
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0001-9655-5606
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis consists of 4 papers. In Paper A we define stacky building data for stacky covers in the spirit of Pardini and give an equivalence of (2,1)- categories between the category of stacky covers and the category of stacky building data. We show that every stacky cover is a flat root stack in the sense of Olsson and Borne–Vistoli and give an intrinsic description of it as a root stack using stacky building data. When the base scheme S is defined over a field, we give a criterion for when a stacky building datum comes from a ramified cover for a finite abelian group scheme over k, generalizing a result of Biswas–Borne.

In Paper B we compute the étale cohomology ring H*(X,Z/nZ) for X the spectrum of the ring of integers of a number field K. As an application, we give a non-vanishing formula for an invariant defined by Minhyong Kim. We also give examples of two distinct number fields whose rings of integers have isomorphic cohomology groups but distinct cohomology ring structures.

In Paper C we generalize the results of Paper B to include the case when X is replaced by an open subset U ⊆ X, where we have removed a finite number of closed points from X. We show that when U is the complement of two odd primes p and q which are congruent to 1 (mod 4), the Legendre symbol of p over q may be interpreted as a cup product in H*(U,Z/2Z).

In Paper D we find formulas for Massey products in étale cohomology of the ring of integers of a number field. Then we use these formulas to, with the help of a computer, find the first ever known examples of imaginary quadratic fields with p-class group of rank 2 for odd p and infinite class field tower. We also compute examples disproving McLeman’s (3, 3)-conjecture.

Abstract [sv]

Denna avhandling består av 4 artiklar. I Artikel A definierar vi stackig byggnadsdata för stackiga övertäckningar i Pardinis anda och visar en ekvivalens av (2,1)-kategorier mellan kategorin av stackiga övertäckningar och kategorin av stackig byggnadsdata. Vi visar att varje stackig övertäckning är en platt rotstack i Olsson och Borne–Vistolis mening och vi ger en intrinsisk beskrivning av den som en rotstack med hjälp av stackig byggnadsdata. När basen S är definierad över en kropp ger vi ett kriterium för när ett stackigt byggnadsdatum kommer från en ramifierad övertäckning för ett ändligt abelskt gruppschema över k. Detta generaliserar ett resultat av Biswas–Borne.

I Artikel B beräknar vi den étala kohomologiringen H*(X, Z/nZ) då X är spektrumet av ringen av heltal av en talkropp K. Som en tillämpning, ger vi ett kriterium i form av en formel för när en invariant definierad av Minhyong Kim är noll eller ej. Vi ger också exempel på två olika talkroppar vars ringar av heltal har isomorfa kohomologigrupper men olika kohomologiringstrukturer.

I Artikel C generaliserar vi resultaten i Artikel B till att innefatta fallet då X ersätts av en öppen delmängd U ⊆ X, där vi tagit bort ett ändligt antal slutna punkter ifrån X. Vi visar att då U är komplementet till två udda primtal p och q, som är kongruenta till 1 (mod 4), så kan Legendre symbolen av p över q betraktas som en kopprodukt i H*(U,Z/2Z).

I Artikel D beräknar vi formler för Masseyprodukter i étale kohomologi av ringen av heltal till en talkropp. Vi använder sedan dessa formler för att, med hjälp av en dator, hitta de första kända exemplen på kvadratiskt imaginära talkroppar vars klassgrupp har p-rang 2, för udda p, och oändligt p-klasskroppstorn. Vi beräknar också exempel som motbevisar McLemans (3, 3)-förmodan.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. , p. 193
Series
TRITA-SCI-FOU ; 2022:41
Keywords [en]
stacks, ramified covers, étale cohomology, cup product, Massey product, Galois cohomology, building data, 2-cocycles
National Category
Mathematics
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-317374ISBN: 978-91-8040-326-9 (print)OAI: oai:DiVA.org:kth-317374DiVA, id: diva2:1694519
Public defence
2022-10-07, Sal F3, Lindstedsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC. 22-09-12

Available from: 2022-09-12 Created: 2022-09-09 Last updated: 2022-09-12Bibliographically approved
List of papers
1. Building Data for Stacky Covers
Open this publication in new window or tab >>Building Data for Stacky Covers
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We define stacky building data for stacky covers in the spirit of Pardini and give an equivalence of (2,1)-categories between the category of stacky covers and the category of stacky building data. We show that every stacky cover is a flat root stack in the sense of Olsson and Borne–Vistoli and give an intrinsic description of it as a root stack using stacky building data. When the base scheme S is defined over a field, we give a criterion for when a birational building datum comes from a tamely ramified cover for a finite abelian group scheme, generalizing a result of Biswas–Borne.

Keywords
Stacky Covers, Building Data, Ramified Covers, Deligne--Faltings data
National Category
Mathematics
Research subject
Mathematics
Identifiers
urn:nbn:se:kth:diva-272730 (URN)
Note

QC 20220912

Available from: 2020-04-28 Created: 2020-04-28 Last updated: 2022-09-12Bibliographically approved
2. The Étale Cohomology Ring of the Ring of Integers of a Number Field
Open this publication in new window or tab >>The Étale Cohomology Ring of the Ring of Integers of a Number Field
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We compute the étale cohomology ring H^*(Spec O_K,Z/nZ) where O_K is the ring of integers of a number field K. As an application, we give a non-vanishing formula for an invariant defined by Minhyong Kim.

National Category
Algebra and Logic
Identifiers
urn:nbn:se:kth:diva-227987 (URN)
Note

QC 20220919

Available from: 2018-05-16 Created: 2018-05-16 Last updated: 2022-09-19Bibliographically approved
3. The Étale Cohomology Ring of a Punctured Arithmetic Curve
Open this publication in new window or tab >>The Étale Cohomology Ring of a Punctured Arithmetic Curve
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We compute the cohomology ring H*(U,ℤ/nℤ) for U=X∖S where X is the spectrum of the ring of integers of a number field K and S is a finite set of finite primes.

Keywords
étale cohomology, cup product, number field, arithmetic curve
National Category
Mathematics
Research subject
Mathematics
Identifiers
urn:nbn:se:kth:diva-317316 (URN)
Note

QC 20220909

Available from: 2022-09-09 Created: 2022-09-09 Last updated: 2022-09-09Bibliographically approved
4. Massey Products in the Étale Cohomology of Number Fields
Open this publication in new window or tab >>Massey Products in the Étale Cohomology of Number Fields
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We give formulas for 3-fold Massey products in the étale cohomology of the ring of integers of a number field and use these to find the first known examples of imaginary quadratic fields with class group of p-rank two possessing an infinite p-class field tower, where p is an odd prime. We also disprove McLeman's (3,3)-conjecture.

Keywords
Massey products, étale cohomology, Galois cohomology, number field
National Category
Mathematics
Research subject
Mathematics
Identifiers
urn:nbn:se:kth:diva-317318 (URN)
Note

QC 20220909

Available from: 2022-09-09 Created: 2022-09-09 Last updated: 2022-09-09Bibliographically approved

Open Access in DiVA

Kappa(671 kB)423 downloads
File information
File name FULLTEXT01.pdfFile size 671 kBChecksum SHA-512
7829fc73525a19b9df54967f78b0ddf02e3b8876f191b3a116c925e077130599a18e45ece5d3059d73d344081deec8fccf944aa4daf85f8a7195140859d50afd
Type fulltextMimetype application/pdf

Authority records

Ahlqvist, Eric

Search in DiVA

By author/editor
Ahlqvist, Eric
By organisation
Mathematics (Div.)
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 424 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 686 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf