kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Communication: Band bending at the interface in polyethylene-MgO nanocomposite dielectric
KTH, Skolan för elektro- och systemteknik (EES), Elektroteknisk teori och konstruktion.
KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.ORCID-id: 0000-0002-3149-4045
KTH, Skolan för elektro- och systemteknik (EES), Elektroteknisk teori och konstruktion.ORCID-id: 0000-0001-7269-5241
2017 (Engelska)Ingår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 146, nr 5, artikel-id 051101Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Polymer nanocomposite dielectrics are promising materials for electrical insulation in high voltage applications. However, the physics behind their performance is not yet fully understood. We use density functional theory to investigate the electronic properties of the interfacial area in magnesium oxide-polyethylene nanocomposite. Our results demonstrate polyethylene conduction band matching with conduction bands of different surfaces of magnesium oxide. Such band bending results in long range potential wells of up to 2.6 eV deep. Furthermore, the fundamental influence of silicon treatment on magnesium oxide surface properties is assessed. We report a reduction of the surface-induced states at the silicon-treated interface. The simulations provide information used to propose a new model for charge trapping in nanocomposite dielectrics.

Ort, förlag, år, upplaga, sidor
American Institute of Physics (AIP), 2017. Vol. 146, nr 5, artikel-id 051101
Nationell ämneskategori
Fysik Kemi
Identifikatorer
URN: urn:nbn:se:kth:diva-205086DOI: 10.1063/1.4975318ISI: 000394576600001PubMedID: 28178802Scopus ID: 2-s2.0-85011805328OAI: oai:DiVA.org:kth-205086DiVA, id: diva2:1697638
Anmärkning

Correction in: Journal of Chemical Physics, vol. 146, issue. 8, DOI: 10.1063/1.4977572, WOS 000395901000053

QC 20170626

Tillgänglig från: 2017-06-26 Skapad: 2022-09-21 Senast uppdaterad: 2022-10-14Bibliografiskt granskad
Ingår i avhandling
1. Ab initio modelling of interfaces in nanocomposites for high voltage insulation
Öppna denna publikation i ny flik eller fönster >>Ab initio modelling of interfaces in nanocomposites for high voltage insulation
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Dielectric nanocomposite materials have been experimentally proven to have properties that are beneficial in applications for efficient energy transport. However, today there are still no empirical models or rules that can predict the performance of a certain combination of materials in the nanocomposite, and there are also no definitive explanations of their dielectric behavior. A deeper understanding of the phenomena behind these materials' response to an applied electric field can open new possibilities for improvement of the insulating properties of nanocomposites.

The goal of this work is to locate the key processes that are responsible for dielectric performance. The methodology of the study is based on ab initio technology, that relies solely on the knowledge of chemical and structural composition of the material. In this work, the charge-related properties of nanocomposite interfaces are studied. The primary material of the study is chosen to be polyethylene-based composite with magnesium oxide nanoparticles.

The impact of the nanoparticle crystal surface termination and its silane treatment on the electronic structure of the interface between MgO and polyethylene are investigated here. Moreover, the effects of presence of carboxyl defect and water molecule near the interface are considered in this work as well.

Based on the calculated electronic structure data, a model for charge dynamics is proposed. The model explains mechanisms for conductivity and space charge reduction in nanocomposites, but also predicts an increase in thermal stress and susceptibility for chemical defects. It is suggested here that the suppression mechanisms for space charge and conductivity in nanocomposites are inherently unstable and can also accelerate material aging.

Ort, förlag, år, upplaga, sidor
KTH Royal Institute of Technology, 2018. s. 67
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-225964 (URN)978-91-7729-743-7 (ISBN)
Disputation
2018-05-04, E3, Osquars backe 14, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Energimyndigheten, 36151SweGRIDS - Swedish Centre for Smart Grids and Energy Storage
Anmärkning

QC 20180413

Tillgänglig från: 2018-04-13 Skapad: 2018-04-11 Senast uppdaterad: 2022-10-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Unge, MikaelJonsson, B. Lars G.

Sök vidare i DiVA

Av författaren/redaktören
Kubyshkina, ElenaUnge, MikaelJonsson, B. Lars G.
Av organisationen
Elektroteknisk teori och konstruktionFiber- och polymerteknologi
I samma tidskrift
Journal of Chemical Physics
FysikKemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 44 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf