kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Benfords law and the characteristic Polynomial of a CUE Matrix
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2021 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Benford’s Law describes a profound behavior that the leading digits of many quantities arising from mathematics, physics, finance, and engineering exhibit. In this text we prove Benford’s Law for the absolute value of the characteristic polynomial det (U-λI) of the CUE(N) as N →∞.  Our analysis produces an integrable bound for the characteristic function of log | det (U - λI|.

Abstract [sv]

Benfords lag beskriver ett djupgående förhållande, vilket utövas av dem första siffrorna av många kvantiteter som uppstår i matematik, fysik, finansvetenskap och teknik. I den här texten bevisar vi Benfords lag för absolutbeloppet av CUE(N) karakteristiska plynomet det (U-λI) när N →∞. Vår analys ger en integrerbar övre gräns för den karakteristiska funktionen av log | det (U - λI|.

Place, publisher, year, edition, pages
2021. , p. 38
Series
TRITA-SCI-GRU ; 2021:391
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-319670OAI: oai:DiVA.org:kth-319670DiVA, id: diva2:1701325
Subject / course
Mathematics
Educational program
Master of Science - Mathematics
Supervisors
Examiners
Available from: 2022-10-05 Created: 2022-10-05 Last updated: 2022-10-05Bibliographically approved

Open Access in DiVA

fulltext(508 kB)111 downloads
File information
File name FULLTEXT01.pdfFile size 508 kBChecksum SHA-512
0a0226e0e419021425d27098ac6db37de4b36d5c44ab5398db3051d4a578ae88849c58e5a76b2742e469e4897e44b9bb0357a34d417a809180f47f136978a10f
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 112 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 201 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf