Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
FCMpy: a python module for constructing and analyzing fuzzy cognitive maps
Maastricht Univ, Hlth Promot, Maastricht, Netherlands..
Miami Univ Ohio, Comp Sci & Software Engn, Oxford, OH USA..
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.
Tilburg Univ, Cognit Sci & Artificial Intelligence, Tilburg, Netherlands..
Vise andre og tillknytning
2022 (engelsk)Inngår i: PeerJ Computer Science, E-ISSN 2376-5992, Vol. 8, s. e1078-, artikkel-id 1078Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

FCMpy is an open-source Python module for building and analyzing Fuzzy Cognitive Maps (FCMs). The module provides tools for end-to-end projects involving FCMs. It is able to derive fuzzy causal weights from qualitative data or simulating the system behavior. Additionally, it includes machine learning algorithms (e.g., Nonlinear Hebbian Learning, Active Hebbian Learning, Genetic Algorithms, and Deterministic Learning) to adjust the FCM causal weight matrix and to solve classification problems. Finally, users can easily implement scenario analysis by simulating hypothetical interventions (i.e., analyzing what-if scenarios). FCMpy is the first open-source module that contains all the functionalities necessary for FCM oriented projects. This work aims to enable researchers from different areas, such as psychology, cognitive science, or engineering, to easily and efficiently develop and test their FCM models without the need for extensive programming knowledge.

sted, utgiver, år, opplag, sider
PeerJ , 2022. Vol. 8, s. e1078-, artikkel-id 1078
Emneord [en]
Active Hebbian learning, FCM, Genetic algorithm, Nonlinear Hebbian learning, Python
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-320513DOI: 10.7717/peerj-cs.1078ISI: 000862818300001PubMedID: 36262149Scopus ID: 2-s2.0-85140603443OAI: oai:DiVA.org:kth-320513DiVA, id: diva2:1705510
Merknad

QC 20221024

Tilgjengelig fra: 2022-10-24 Laget: 2022-10-24 Sist oppdatert: 2024-03-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Wozniak, Maciej K.

Søk i DiVA

Av forfatter/redaktør
Wozniak, Maciej K.
Av organisasjonen
I samme tidsskrift
PeerJ Computer Science

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 74 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf