kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sulfated carboxymethyl cellulose and carboxymethyl kappa-carrageenan immobilization on 3D-printed poly-epsilon-caprolactone scaffolds differentially promote pre-osteoblast proliferation and osteogenic activity
Univ Amsterdam, Acad Ctr Dent Amsterdam ACTA, Dept Oral Cell Biol, Amsterdam Movement Sci, Amsterdam, Netherlands.;Vrije Univ Amsterdam, Amsterdam, Netherlands..
Univ Amsterdam, Acad Ctr Dent Amsterdam ACTA, Dept Oral Cell Biol, Amsterdam Movement Sci, Amsterdam, Netherlands.;Vrije Univ Amsterdam, Amsterdam, Netherlands..
Islamic Azad Univ, Dept Biomed Engn, Sci & Res Branch, Tehran, Iran..
Amirkabir Univ Technol, Dept Mech Engn, Tehran, Iran..
Show others and affiliations
2022 (English)In: Frontiers in Bioengineering and Biotechnology, E-ISSN 2296-4185, Vol. 10, article id 957263Article in journal (Refereed) Published
Abstract [en]

The lack of bioactivity in three-dimensional (3D)-printing of poly-epsilon-caprolactone (PCL) scaffolds limits cell-material interactions in bone tissue engineering. This constraint can be overcome by surface-functionalization using glycosaminoglycan-like anionic polysaccharides, e.g., carboxymethyl cellulose (CMC), a plant-based carboxymethylated, unsulfated polysaccharide, and kappa-carrageenan, a seaweed-derived sulfated, non-carboxymethylated polysaccharide. The sulfation of CMC and carboxymethylation of kappa-carrageenan critically improve their bioactivity. However, whether sulfated carboxymethyl cellulose (SCMC) and carboxymethyl kappa-carrageenan (CM-kappa-Car) affect the osteogenic differentiation potential of pre-osteoblasts on 3D-scaffolds is still unknown. Here, we aimed to assess the effects of surface-functionalization by SCMC or CM-kappa-Car on the physicochemical and mechanical properties of 3D-printed PCL scaffolds, as well as the osteogenic response of pre-osteoblasts. MC3T3-E1 pre-osteoblasts were seeded on 3D-printed PCL scaffolds that were functionalized by CM-kappa-Car (PCL/CM-kappa-Car) or SCMC (PCL/SCMC), cultured up to 28 days. The scaffolds' physicochemical and mechanical properties and pre-osteoblast function were assessed experimentally and by finite element (FE) modeling. We found that the surface-functionalization by SCMC and CM-kappa-Car did not change the scaffold geometry and structure but decreased the elastic modulus. Furthermore, the scaffold surface roughness and hardness increased and the scaffold became more hydrophilic. The FE modeling results implied resilience up to 2% compression strain, which was below the yield stress for all scaffolds. Surface-functionalization by SCMC decreased Runx2 and Dmp1 expression, while surface-functionalization by CM-kappa-Car increased Cox2 expression at day 1. Surface-functionalization by SCMC most strongly enhanced pre-osteoblast proliferation and collagen production, while CM-kappa-Car most significantly increased alkaline phosphatase activity and mineralization after 28 days. In conclusion, surface-functionalization by SCMC or CM-kappa-Car of 3D-printed PCL-scaffolds enhanced pre-osteoblast proliferation and osteogenic activity, likely due to increased surface roughness and hydrophilicity. Surface-functionalization by SCMC most strongly enhanced cell proliferation, while CM-kappa-Car most significantly promoted osteogenic activity, suggesting that surface-functionalization by CM-kappa-Car may be more promising, especially in the short-term, for in vivo bone formation.

Place, publisher, year, edition, pages
Frontiers Media SA , 2022. Vol. 10, article id 957263
Keywords [en]
bio-functionalization, bone tissue engineering, carboxymethylated kappa-carrageenan, finite element modeling, PCL (poly-epsilon-caprolactone), pre-osteoblast, 3D-printed scaffold, sulfated carboxymethyl cellulose
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-321390DOI: 10.3389/fbioe.2022.957263ISI: 000869453800001PubMedID: 36213076Scopus ID: 2-s2.0-85140089669OAI: oai:DiVA.org:kth-321390DiVA, id: diva2:1711152
Note

QC 20221116

Available from: 2022-11-16 Created: 2022-11-16 Last updated: 2022-11-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Oliaei, Erfan

Search in DiVA

By author/editor
Oliaei, Erfan
By organisation
Biocomposites
In the same journal
Frontiers in Bioengineering and Biotechnology
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 68 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf