kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Na-ion Dynamics in the Solid Solution NaxCa1-xCr2O4 Studied by Muon Spin Rotation and Neutron Diffraction
KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.ORCID iD: 0000-0003-4441-8882
KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.ORCID iD: 0000-0001-8879-7875
KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.ORCID iD: 0000-0002-8324-710x
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In this work we present systematic set of measurements carried out by muon spin rotation/relaxation (μ+SR) and neutron powder diffraction (NPD) on the solid solution NaxCa1−xCr2O4. This study investigates Na-ion dynamics in the quasi-1D (Q1D) diffusion channels created by the honeycomb-like arrangement of CrO6 octahedra, in the presence of defects introduced by Ca doping. With increasing Ca content, the size of the diffusion channels is enlarged, however, this effect does not enhance the Na ion mobility. Instead the overall diffusivity is hampered by the local defects and the Na hopping probability is lowered. The diffusion mechanism in NaxCa1−xCr2O4 was found to be interstitial and the activation energy as well as diffusion coefficient were determined for all the members of the solid solution. 

National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-321685DOI: 10.48550/arXiv.2211.13164OAI: oai:DiVA.org:kth-321685DiVA, id: diva2:1712383
Note

Submitted to  Sustainable Energy & Fuels, E-ISSN 2398-4902

QC 20221129

Available from: 2022-11-21 Created: 2022-11-21 Last updated: 2024-02-05Bibliographically approved
In thesis
1. A Comprehensive Experimental Approach to Multifunctional Quantum Materials and their Physical Properties: Geometry and Physics in Condensed Matter
Open this publication in new window or tab >>A Comprehensive Experimental Approach to Multifunctional Quantum Materials and their Physical Properties: Geometry and Physics in Condensed Matter
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis ranges within the vast framework of experimental condensed matter physics. Several different systems, and physical phenomena, are presented here from a structuralist standpoint. In fact, we show how, in solid condensed matter, the underlying arrangement of atoms, the symmetry of their structure, and their mutual interactions, underpin the form and the nature of their collective emergent properties. Our effort in this work was focused on unveiling complex magnetic ground states in newly synthesized materials, as well as in the clarification of unconventional symmetry breaking phenomena in highly debated systems. In all cases, we could understand the physics of such systems only when we elucidated the details, and temperature dependent evolution, of their structures.

About the choice of target materials for our investigations, our starting point has not only been fundamental condensed matter physics, but also forward looking towards a sustainable future. Here we considered both the development of energy efficient spintronics and quantum computing, as well as the need for efficient conversion and storage of clean energy. Therefore, this project is concerned with the advanced characterization of novel ”multifunctional” materials, that constitute a unique playground for fundamental scientific research, but also lend themselves to potential novel technical applications. Such materials might indeed display high temperature dynamical properties, which make them suitable for rechargeable batteries and heat conduction applications. At the same time, they are also strongly correlated electron systems at lower temperatures, and their fundamental magnetic and electronic properties are relevant for the development of quantum devices. To explore these properties, extensive experimental studies using large-scale research facilities were employed. In this project, several unique and powerful state-of-the-art high-resolution neutron scattering, X-ray scattering, and muon spin rotation techniques were used.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2022. p. 137
Series
TRITA-SCI-FOU ; 2022:58
Keywords
quantum materials, neutron, muon, X-ray, symmetry, phase transitions
National Category
Condensed Matter Physics
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-321992 (URN)978-91-8040-420-4 (ISBN)
Public defence
2022-12-19, (Room 4204), Hannes Alfvéns väg 12, vån. 4, Alba Nova, KTH, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2022-11-28 Created: 2022-11-28 Last updated: 2023-12-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Nocerino, ElisabettaForslund, Ola KenjiMatsubara, NamiZubayer, AntonMånsson, Martin

Search in DiVA

By author/editor
Nocerino, ElisabettaForslund, Ola KenjiMatsubara, NamiZubayer, AntonMazza, FedericoMånsson, Martin
By organisation
Materials and Nanophysics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf