kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Neural Greedy Pursuit for Feature Selection
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Teknisk informationsvetenskap.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Teknisk informationsvetenskap.ORCID-id: 0000-0002-8534-7622
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Teknisk informationsvetenskap.
Weizmann Inst Sci, Math & Comp Sci, Rehovot, Israel..
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), Institute of Electrical and Electronics Engineers (IEEE) , 2022Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We propose a greedy algorithm to select N important features among P input features for a non-linear prediction problem. The features are selected one by one sequentially, in an iterative loss minimization procedure. We use neural networks as predictors in the algorithm to compute the loss and hence, we refer to our method as neural greedy pursuit (NGP). NGP is efficient in selecting N features when N << P, and it provides a notion of feature importance in a descending order following the sequential selection procedure. We experimentally show that NGP provides better performance than several feature selection methods such as DeepLIFT and Drop-one-out loss. In addition, we experimentally show a phase transition behavior in which perfect selection of all N features without false positives is possible when the training data size exceeds a threshold.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE) , 2022.
Serie
IEEE International Joint Conference on Neural Networks (IJCNN), ISSN 2161-4393
Nyckelord [en]
Feature selection, Deep learning
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-323022DOI: 10.1109/IJCNN55064.2022.9892946ISI: 000867070908056Scopus ID: 2-s2.0-85140774694OAI: oai:DiVA.org:kth-323022DiVA, id: diva2:1725934
Konferens
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC), JUL 18-23, 2022, Padua, ITALY
Anmärkning

Part of proceedings: ISBN 978-1-7281-8671-9

QC 20230112

Tillgänglig från: 2023-01-12 Skapad: 2023-01-12 Senast uppdaterad: 2023-01-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Das, SandipanJavid, Alireza M.Borpatra Gohain, PrakashChatterjee, Saikat

Sök vidare i DiVA

Av författaren/redaktören
Das, SandipanJavid, Alireza M.Borpatra Gohain, PrakashChatterjee, Saikat
Av organisationen
Teknisk informationsvetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 45 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf