kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Error-driven adaptive mesh refinement for unsteady turbulent flows in spectral-element simulations
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0002-1724-0188
KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-6712-8944
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0002-7448-3290
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0001-9627-5903
2023 (English)In: Computers & Fluids, ISSN 0045-7930, E-ISSN 1879-0747, Vol. 251, p. 105736-, article id 105736Article in journal (Refereed) Published
Abstract [en]

The simulation of turbulent flows requires high spatial resolution in potentially a priori unknown, solution -dependent locations. To achieve adaptive refinement of the mesh, we rely on error indicators. We assess the differences between an error measure relying on the local convergence properties of the numerical solution and a goal-oriented error measure based on the computation of an adjoint problem. The latter method aims at optimizing the mesh for the calculation of a predefined integral quantity, or functional of interest. This work follows on from a previous study conducted on steady flows in Offermans et al. (2020) and we extend the use of the so-called adjoint error estimator to three-dimensional, turbulent flows. They both represent a way to achieve error control and automatic mesh refinement (AMR) for the numerical approximation of the Navier-Stokes equations, with a spectral element method discretization and non-conforming h-refinement.The current study consists of running the same physical flow case on gradually finer meshes, starting from a coarse initial grid, and to compare the results and mesh refinement patterns when using both error measures. As a flow case, we consider the turbulent flow in a constricted, periodic channel, also known as the periodic hill flow, at four different Reynolds numbers: Re = 700, Re = 1400, Re = 2800 and Re = 5600. Our results show that both error measures allow for effective control of the error, but they adjust the mesh differently. Well-resolved simulations are achieved by automatically focusing refinement on the most critical regions of the domain, while significant saving in the overall number of elements is attained, compared to statically generated meshes. At all Reynolds numbers, we show that relevant physical quantities, such as mean velocity profiles and reattachment/separation points, converge well to reference literature data. At the highest Reynolds number achieved (Re = 5600), relevant quantities, i.e. reattachment and separation locations, are estimated with the same level of accuracy as the reference data while only using one-third of the degrees of freedom of the reference. Moreover, we observe distinct mesh refinement patterns for both error measures. With the spectral error indicator, the mesh resolution is more uniform and turbulent structures are more resolved within the whole domain. On the other hand, the adjoint error estimator tends to focus the refinement within a localized zone in the domain, dependent on the functional of interest, leaving large parts of the domain marginally resolved.

Place, publisher, year, edition, pages
Elsevier BV , 2023. Vol. 251, p. 105736-, article id 105736
Keywords [en]
Adaptive mesh refinement, Spectral error indicator, Adjoint error estimator, Error control, Spectral element method, Direct numerical simulations
National Category
Fluid Mechanics Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-323021DOI: 10.1016/j.compfluid.2022.105736ISI: 000897039400009Scopus ID: 2-s2.0-85143485679OAI: oai:DiVA.org:kth-323021DiVA, id: diva2:1725949
Note

QC 20230112

Available from: 2023-01-12 Created: 2023-01-12 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Space-adaptive simulation of transition and turbulence in shear flows
Open this publication in new window or tab >>Space-adaptive simulation of transition and turbulence in shear flows
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Rymdadaptiv simulering av transition och turbulens i skjuvströmning
Abstract [en]

Transitional and turbulent shear flows are ubiquitous, from the boundary layer developing on an aeroplane wing to the flow within the aortic arch. In this thesis, we study wall-bounded and free shear flows through direct numerical simulations. To control numerical errors and represent every flow structure, we implement the adaptive mesh refinement (AMR) technique within a spectral element method code. Using data-driven methods and causality metrics, we explore the fundamental physical mechanisms in various shear flows.

The adaptive mesh refinement technique necessitates a precise evaluation of the committed error. Thus, we compare the local spectral error indicator with the dual-weighted adjoint error estimator. The former ensures a more homogeneous refinement, targeting regions with a high-velocity gradient, while the latter is goal-oriented. However, the adjoint error estimator fails in turbulent flows due to the exponential sensitivity of the adjoint linear solution to any perturbation. Alternatively, we introduce a causality-based error indicator that employs the Shannon transfer entropy, i.e. a causality metric arising from information theory, to establish causal relations between the local solution and a specified quantity of interest.

Using information-theoretic causality, linear global stability analysis and modal decomposition, we investigate transitional and turbulent coherent structures. In turbulent straight pipe flows, the proper orthogonal decomposition is integrated with the Voronoi diagram to automatically discern between wall-attached and detached eddies. In spatially developing bent pipe flows, we employ the proper orthogonal decomposition to examine the swirl switching phenomenon, the origins of which continue to be a topic of debate. In the context of external flows around a cylinder, we explore two configurations: the Flettner rotor, a rotating cylinder in a wall-bounded shear flow, and the stepped cylinder, namely two cylinders of different diameters joined at one extremity. In the first configuration, we analyse the large-scale motion at the base of the rotor and the local vortex shedding suppression. In the second, we provide an in-depth look at structures arising on the junction surface and in the wake. Additionally, we conduct a global stability analysis with a novel AMR-based approach for some of the aforementioned cases.

Abstract [sv]

I denna avhandling studerar vi transitionella och turbulenta skjuvströmningar genom direkta numeriska simuleringar. Med hänsyn till den avgörande rollen av att kontrollera numeriska fel och representera varje skala i rummet, utvecklar, validerar och implementerar vi den adaptiva nätförfiningstekniken inom en spektralelementkod. Med hjälp av data-drivna metoder och mått för kausalitet utforskar vi de grundläggande fysikaliska mekanismerna i olika skjuvströmningar.

Den adaptiva nätförfiningen kräver en noggrann beräkning av det begångna felet. Således jämför vi den lokala spektrala felindikatorn med den felestimatorn från adjunkt-ekvationen. Den förra säkerställer en mer homogen förfining, inriktad på områden med en stor hastighetsgradient, medan den senare är målinriktad. Emellertid misslyckas den adjunkta felestimatorn i turbulenta flöden på grund av den exponentiella känsligheten hos den adjunkta linjära lösningen för turbulenta störningar. Som nytt alternativ introducerar vi en kausalitets-baserad felindikator som använder Shannon-transferentropin, dvs. ett kausalitets-mått som härrör från informationsteori, för att fastställa kausala samband mellan den lokala lösningen och en specificerad kvantitet av intresse.

Med hjälp av detta kausalitets-mått, linjär global stabilitetsanalys och modal dekomposition undersöker vi transitionella och turbulenta koherenta strukturer. I glatta turbulenta rörströmningar använder vi den så kallade proper orthogonal decomposition (POD) med Voronoi-diagrammet för att automatiskt skilja mellan väggnära och yttre virvlar. För strömningsfallet med ett krökt rör med 90 eller 180 grader-vinkel använder vi POD för att undersöka fenomenet swirl switching, vars ursprung fortsatt är oklart i litteraturen. I samband med den externa strömningen runt en cylinder utforskar vi två konfigurationer: Flettner-rotorn, en roterande cylinder i ett gränsskikt och den stegformade cylindern, där två cylindrar med olika diametrar är sammanfogade i ena änden. I den första konfigurationen analyserar vi den storskaliga rörelsen vid rotorns bas och den lokala förändringen av virvelamplituden. I den andra ger vi en djupgående analys av strukturer som uppstår nära mitten och i vaken. Dessutom genomför vi en global stabilitetsanalys med en ny adaptiv metod för att förstå bättre fysiken av de tidigare nämnda fallen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024
Series
TRITA-SCI-FOU ; 2024:10
Keywords
Turbulence, global stability, coherent structures, adaptive mesh refinement, Turbulens, global stabilitet, koherenta strukturer, adaptiv nätförfining
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-344052 (URN)978-91-8040-844-8 (ISBN)
Public defence
2024-03-27, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 240304

Available from: 2024-03-04 Created: 2024-02-29 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Offermans, NicolasMassaro, DanielePeplinski, AdamSchlatter, Philipp

Search in DiVA

By author/editor
Offermans, NicolasMassaro, DanielePeplinski, AdamSchlatter, Philipp
By organisation
Linné Flow Center, FLOWEngineering Mechanics
In the same journal
Computers & Fluids
Fluid MechanicsComputational Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 362 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf