kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Platinum-free Electrocatalysts: Design, Synthesis, and Energy Applications
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. (Nuclear Chemistry Group)ORCID iD: 0000-0001-6595-4583
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Pt is one of the most commonly used catalysts for green energy applications, such as fuel cells, electrolyzers, and dye-sensitized solar cells. Although enormous effort has been put into improving the catalytic activity and minimizing the usage of Pt in the catalysts, the low abundance and high price of Pt still limit the large-scale commercialization of green energy devices and facilities. Developing cost-effective and highly efficient Pt-free catalysts is urgent and imperative. γ-radiation induced synthesis approach is known for its mild reaction condition, good controllability, and upscaling production capability. In this thesis, Pt-free nanocatalysts of various types: monometallic (Ni, Ag nanoparticles), bimetallic (Ag-Ni core-shell and heterostructures, Pd-Ni nanoframe, Ni-Co alloys), metal oxides (MnOx, CeO2), and hybrids (Pd-CeO2, Ag-ionomer), are designed and fabricated using γ-radiation induced synthesis method. The structural, chemical and electrocatalytic properties of the obtained nanocatalysts are analyzed. 

First, Ni nanoparticles (NPs) were synthesized. It was found that the freestanding Ni NPs are small (~3 nm) and tend to agglomerate to larger clusters (Paper I). Based on the results obtained for the Ni NPs, binary nanocatalysts Ni-Co, Ni-Ag, and Ni-Pd are produced. It has been shown for Ni-Co alloy nanoparticles that, by varying the Ni-to-Co ratio, one can tune their electrocatalytic performance for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) (Paper IV). By introducing the less expensive noble metal Ag to the catalysts, bimetallic Ni-Ag NPs with different structures are fabricated: heterostructure (Ag-Ni) and core-shell (Ag@NiO). A comparative study of these two different nanocatalysts allowed us to separate the contributions of ligand and strain effects on the ORR activity of the Ni-Ag catalysts (Paper II). By mixing up the highly active but expensive metal, Pd, with a less expensive transition metal, Ni, Ni-Pd nanocatalysts with a framework (PdNi-NF) and nanochain (PdNi-NC) morphology are obtained. PdNi-NF nanocatalysts deposited on commercial carbon black exhibit superior ORR activity and durability due to their framework morphology and Pd-enriched surface layer (Paper III). Since poly(vinyl alcohol) (PVA) has often been used as a surfactant to control the size of nanoparticles in γ-radiation induced synthesis, it is found that residual PVA on the catalyst surface may inhibit its activity. Therefore, an anion-exchange ionomer is tried to be used as the surfactant, and it turns out to be a superior, efficient size regulator for the synthesis of Ag NPs. The mechanism of Ag particle size control was studied. The prepared Ag NPs covered by the ionomer are applied as model catalysts to investigate the kinetics of ORR (Paper VIII). 

In addition to metal nanoparticles, metal oxides, including manganese oxide (MnOx) and Ceria (CeO2), have also been synthesized and investigated. Two types of MnOx with different compositions and morphologies were produced using reducing and oxidizing synthetic pathways. Thereafter, the ORR performance of the two types of MnOx nanostructures is compared (Paper V). In Paper VI, the nucleation and growth mechanism of CeO2 mesocrystals are investigated and proposed. Considering the results in Paper VI, the Pd-CeO2 nanocatalysts have been developed. First, the CeO2 mesocrystals were pretreated with ascorbic acid to create more Ce3+ defects on the surface. After that, using pretreated CeO2 as a substrate, the Pd is deposited with various sizes (single atom, cluster, and nanoparticle). A comparative study of different Pd/CeO2 catalysts reveals a relationship between size, metal-support interactions (MSI), and ORR activity (Paper VII).

Abstract [sv]

Platina är en av de mest använda katalysatorerna i gröna energikällor somexempelvis bränsleceller, elektrolysörer och grätzelsolcell. Stora ansträngningar har dock gjorts för att reducera mängden platina som används i dessa energikällor, på grund av dess sällsynthet och höga kostnad. Att utveckla platinafria katalysatorer som även är kostnadseffektiva och kraftfulla äridag mycket aktuellt. Gammastålningsinducerande syntes är känd för dessmilda reaktionsförhållnaden, är lätt att kontrollera samt så finns det utrymme för uppskalning av produktionskapaciteten. I denna avhandling designas och produceras följande typer av platinafria katalysatorer med hjälp av gammastålningsinducerande syntes: Monometalliska (Ni, Ag nanopartiklar), bimetalliska (Ag-Ni core-shell och heterostrukturer, Pd-Ni nanoram, Ni-Co legeringar), metalloxider (Manganocid, Ceriumdioxid) och hybrider (Pd-CeO2), Ag-jonomer. Sedan analyseras nanokatalysatorernas strukturella, kemiska samt elektrokatalytiska egenskaper.

Först syntetiseras nanopartiklarna. Det upptäcktes att fristående nickel-nanopartiklar är små (ca 3 nm) och brukar samla ihop sig i större kluster (Artikel I). Baserat på resultaten som sågs för nickel-nanopartiklarna, skapas binära nanokatalysatorer Ni-Co, Ni-Ag och Ni-Pd. Det visade sig att Ni-Co legeringens elektrokatalytiska prestationsförmåga för syrereduktionsreaktion, syreutvecklingsreaktion samt väteutvecklingsreaktion kan justeras genom att förhållandet mellan Ni och Co ändras (Artikel IV). Genom att lägga till silver, som är en billigare ädelmetall till katalysatorerna, tillverkas bimetalliska Ni-Ag nanopartiklar med olika strukturer: Heterostrukturen (Ag-Ni) och core-shell (Ag@NiO). En studie som jämförde dessa två nanokatalysatorer möjliggjorde det för oss att urskilja ligand- och deformationseffekt påverkan på Ni-Ag katalysatorerna (Artikel II). Genom att blanda den högreaktiva men den dyra metallen palladium med den billigare övergångsmetallen, Nickel, skapas Ni-Pd nanokatalysatorer med formerna nanoramen (PdNi-NF) och nanokedjan (PdNi-NC). PdNi-NF nanokatalysatorer som deponeras på kommersiellt kol uppvisar större syrereduktionsreaktionsförmåga och hållbarhet på grund av dess nätliknande struktur och Pd-berikade ytlager (Artikel III). Eftersom polyvinylalkohol (PVA) ofta har används som tensid för att begränsa storleken på nanopartiklarna under en gammastålningsinducerande syntes, är det möjligt att överflödigt PVA på katalysatorn kan hämma dess aktivitet. Därför gjordes försök där en anjonbytarjonomer användes som tensid och den visade sig en effektivare storleksreglerare för syntesen av silvernanopartiklar. Mekanismen för reglering av silverpartikelstrolek studerades. De färdiga silvernanopartiklarna som var täckta med jonomer användes som modellkatalysatorer för att granska syrereduktionsreaktionens kinetik (Artikel VIII).

Utöver metallnanopartiklarna, syntetiserades och granskades även metalloxiderna manganoxid (MnOx) samt ceria (CeO2). Två typer av manganoxid med olika sammansättning och morfologi tillverkades genom syntesmetoderna reduktion och oxidation. Därefter jämförs prestationsförmågan för syrereduktionsreaktionen för de två olika typerna av manganoxid (Artikel V). I Artikel VI undersöks och föreslås mekanismen för kärnbildning och tillväxt av ceria. Baserat på resultatet i Artikel VI, togs Pd-CeO2 nanokatalysatorer fram. Först förbehandlades CeO2 mesokristallerna med askorbinsyra för att skapa mer Ce3+ defekter på ytan. Sedan deponeras palladium i olika storlekar (atom, kluster och nanopartikel), genom att förbehandlad ceria används som substrat. En studie som jämför olika Pd/CeO2 katalysatorer visar på en relation mellan storlek, metall-stöd interaktioner (MSI) och aktivitetsnivån för syrereduktionsreaktion (Artikel VII).

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 81
Series
TRITA-CBH-FOU ; 2023:3
Keywords [en]
Pt-free electrocatalysts; γ-radiation induced synthesis; size, morphology, structure, and composition of nanocatalysts; ORR; catalytic activity and durability; formation mechanism of catalyst materials in aqueous solutions.
National Category
Physical Chemistry
Research subject
Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-323553ISBN: 978-91-8040-474-7 (print)OAI: oai:DiVA.org:kth-323553DiVA, id: diva2:1733717
Public defence
2023-03-03, Kollegiesalen, Brinnelvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research
Note

QC 2023-02-06

Available from: 2023-02-06 Created: 2023-02-03 Last updated: 2023-02-06Bibliographically approved
List of papers
1. Gamma-radiation induced synthesis of freestanding nickel nanoparticles
Open this publication in new window or tab >>Gamma-radiation induced synthesis of freestanding nickel nanoparticles
Show others...
2021 (English)In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 50, no 1, p. 376-383Article in journal (Refereed) Published
Abstract [en]

A versatile method to produce metallic nickel nanoparticles is demonstrated. Metallic Ni nanoparticles have been synthesized from aqueous solution of NiCl2 using gamma-radiation induced reduction. To prevent Ni re-oxidation, post-irradiation treatment was elaborated. Structural and compositional analyses were executed using X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. These studies reveal that the synthesized material consists of fcc Ni particles having size of 3.47 +/- 0.71 nm. The nanoparticles have a tendency to agglomerate to the larger clusters. The latter are partially oxidized to form thin amorphous/poor-crystalline Ni(OH)(2)/NiO layers at the surface. Magnetization measurements demonstrate that the nanomaterial exhibit ferromagnetic-like behaviour with magnetization 30% lower than that in bulk Ni. The large active surface area (ECSA, 39.2 m(2) g(-1)) and good electrochemical reversibility, confirmed by the electrochemical studies, make the synthesized material a potential candidate as an active component for energy storage devices.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC), 2021
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-289549 (URN)10.1039/d0dt03223a (DOI)000605666100038 ()33320122 (PubMedID)2-s2.0-85098958729 (Scopus ID)
Note

QC 20210204

Available from: 2021-02-04 Created: 2021-02-04 Last updated: 2023-02-03Bibliographically approved
2. Core-shell and heterostructured silver-nickel nanocatalysts fabricated by γ-radiation induced synthesis for oxygen reduction in alkaline media
Open this publication in new window or tab >>Core-shell and heterostructured silver-nickel nanocatalysts fabricated by γ-radiation induced synthesis for oxygen reduction in alkaline media
Show others...
2022 (English)In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 51, no 9, p. 3604-3615Article in journal (Refereed) Published
Abstract [en]

To reach commercial viability for fuel cells, one needs to develop active and robust Pt-free electrocatalysts. Silver has great potential to replace Pt as the catalyst for the oxygen reduction reaction (ORR) in alkaline media due to its low cost and superior stability. However, its catalytic activity needs to be improved. One possible solution is to fabricate bimetallic nanostructures, which demonstrate a bifunctional enhancement in the electrochemical performance. Here, two types of bimetallic silver-nickel nanocatalysts, core-shells (Ag@NiO) and heterostructures (Ag/Ni), are fabricated using γ-radiation induced synthesis. The Ag@NiO nanoparticles consist of an amorphous, NiO layer as a shell and a facetted crystalline Ag particle as a core. Meanwhile, the Ag/Ni heterostructures comprise Ag particles decorated with Ni/Ni(oxy-hydro)-oxide clusters. Both materials demonstrate similar and increased alkaline ORR activity as compared to monometallic catalysts. It was revealed that the enhanced catalytic activity of the core-shells is mainly attributed to the electronic ligand effect. While in the Ag/Ni heterostructures, a lattice mismatch between the Ni-based clusters and Ag implies a significant lattice strain, which, in turn, is responsible for the increased activity of the catalyst. Also, the Ag/Ni samples exhibit good stability under operating conditions due to the existence of stable Ni3+ compounds on the surface.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC), 2022
Keywords
Catalyst activity, Electrocatalysts, Electrolytic reduction, Fabrication, Fuel cells, Gamma rays, Lattice mismatch, Nanocatalysts, Nickel oxide, Oxygen, Ag particles, Alkaline media, Commercial viability, Core shell, Nano-catalyst, Oxygen Reduction, Oxygen reduction reaction, Radiation-induced synthesis, ]+ catalyst, γ-radiation, Shells (structures)
National Category
Other Chemistry Topics
Identifiers
urn:nbn:se:kth:diva-321557 (URN)10.1039/d1dt03897d (DOI)000754017100001 ()35147619 (PubMedID)2-s2.0-85125553888 (Scopus ID)
Note

QC 20221121

Available from: 2022-11-21 Created: 2022-11-21 Last updated: 2023-02-03Bibliographically approved
3. PdNi Nanoframework and Nanochain Catalysts with Enhanced Oxygen Reduction Reaction Performance
Open this publication in new window or tab >>PdNi Nanoframework and Nanochain Catalysts with Enhanced Oxygen Reduction Reaction Performance
2022 (English)In: ChemCatChem, ISSN 1867-3880, E-ISSN 1867-3899, Vol. 14, no 24Article in journal (Refereed) Published
Abstract [en]

The development of Pt-free nanocatalysts with enhanced electrocatalytic activity and durability is essential for the commercialization of fuel cells. Herein, we report a new class of active and durable PdNi nanocatalysts for the oxygen reduction reaction (ORR) in an alkaline medium. PdNi nanoframework (PdNi-NF), consisting of interconnected ultrathin ridges was synthesized through a galvanic replacement reduction (GRR) strategy using Ni nanoparticles, obtained by radiolytic reduction, as seeds. PdNi nanochain (PdNi-NC), composed of aggregated nanoparticles, was produced by one-pot γ-radiation induced reduction. It was found that the carbon-supported PdNi-NF catalysts exhibit higher ORR activity and enhanced durability compared to PdNi-NC/C (PdNi-NC on carbon), Pd-NP/C (Pd nanoparticle on carbon), and commercial Pt/C catalysts. The superior activity of PdNi-NF/C catalyst may originate from the nanoframework morphology that facilitates the O2 diffusion and the electronic effect induced by the sub-surface PdNi alloy; the improved durability can be ascribed to the stable Pd-enriched surface layer. 

Place, publisher, year, edition, pages
Wiley, 2022
National Category
Materials Chemistry Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-323376 (URN)10.1002/cctc.202200941 (DOI)000892021100001 ()2-s2.0-85142933155 (Scopus ID)
Note

QC 20230207

Available from: 2023-01-28 Created: 2023-01-28 Last updated: 2023-02-07Bibliographically approved
4. Tuning catalytic activity of Ni-Co nanoparticles synthesized by gamma-radiolytic reduction of acetate aqueous solutions
Open this publication in new window or tab >>Tuning catalytic activity of Ni-Co nanoparticles synthesized by gamma-radiolytic reduction of acetate aqueous solutions
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Transition metal-based catalysts show great potential to replace Pt-based material in energy conversion devices thanks to their low cost, reasonable intrinsic activity, thermodynamic stability, and corrosion resistance. The electrochemical performance of such catalysts is sensitive to their composition and structure. Here we demonstrate that homogeneous alloy nanoparticles with a varying Ni-to-Co ratio and controlled structure can be synthesized from aqueous Ni (Co) acetate solutions using a facile γ-radiolytic reduction method. The obtained samples are found to possess stacking fault defects that are ordered to form polytype structures. The concentration of these defects depends on the Ni-to-Co ratio, as supported by the results of ab initio calculations. Structural defects may play a significant role in the enhanced activity of catalysts toward oxygen evolution and oxygen reduction reactions. At the same time, the activity of Ni-Co catalysts in the hydrogen evolution reaction is found to be affected by the formation of Ni-OH bonds on the surface rather than by the presence of structural defects. Our study demonstrates that the composition of Ni-Co nanoparticles is an essential factor having an impact on their structure and that both composition and structure can be tuned to optimize electrochemical performance with respect to various catalytic reactions. 

National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-323379 (URN)
Note

QC 20230214

Available from: 2023-01-28 Created: 2023-01-28 Last updated: 2023-02-14Bibliographically approved
5. Tuning morphology, composition and oxygen reduction reaction (ORR) catalytic performance of manganese oxide particles fabricated by γ-radiation induced synthesis
Open this publication in new window or tab >>Tuning morphology, composition and oxygen reduction reaction (ORR) catalytic performance of manganese oxide particles fabricated by γ-radiation induced synthesis
Show others...
2021 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 583, p. 71-79Article in journal (Refereed) Published
Abstract [en]

A γ-radiation induced synthesis method is used to fabricate manganese oxide catalysts through both reduction and oxidation routes. It is shown that the morphology, composition and electrochemical performance of the produced manganese oxide particles can be tuned by altering the redox conditions. The catalysts prepared via radiolytic oxidation have a hollow spherical morphology, possess γ-MnO2 structure and show high catalytic activity for the complete four-electron reaction pathway of the oxygen reduction reaction (ORR) in alkaline electrolyte. Meanwhile, the catalysts synthesized via radiolytic reduction possess a rod-like morphology with a Mn3O4 bulk structure and favour the incomplete two-electron reaction pathway for ORR. The high catalytic activity of the manganese oxide synthesized via the oxidation route can be attributed to high electrochemical surface area and increased amount of Mn3+ on the surface as compared to those in the sample obtained via the reduction route.

Keywords
MnOx nanoparticles, γ-radiation induced synthesis, ORR, 4-electron transfer
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-299778 (URN)10.1016/j.jcis.2020.09.011 (DOI)000594859200008 ()32979712 (PubMedID)2-s2.0-85091336556 (Scopus ID)
Note

QC 20220511

Available from: 2021-08-17 Created: 2021-08-17 Last updated: 2023-02-03Bibliographically approved
6. Radiation Chemistry Provides Nanoscopic Insights into the Role of Intermediate Phases in CeO2 Mesocrystal Formation
Open this publication in new window or tab >>Radiation Chemistry Provides Nanoscopic Insights into the Role of Intermediate Phases in CeO2 Mesocrystal Formation
Show others...
2022 (English)In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 61, no 6, article id e202112204Article in journal (Refereed) Published
Abstract [en]

The role of intermediate phases in CeO2 mesocrystal formation from aqueous CeIII solutions subjected to γ-radiation was studied. Radiolytically formed hydroxyl radicals convert soluble CeIII into less soluble CeIV. Transmission electron microscopy (TEM) and X-ray diffraction studies of samples from different stages of the process allowed the identification of several stages in CeO2 mesocrystal evolution following the oxidation to CeIV: (1) formation of hydrated CeIV hydroxides, serving as intermediates in the liquid-to-solid phase transformation; (2) CeO2 primary particle growth inside the intermediate phase; (3) alignment of the primary particles into “pre-mesocrystals” and subsequently to mesocrystals, guided by confinement of the amorphous intermediate phase and accompanied by the formation of “mineral bridges”. Further alignment of the obtained mesocrystals into supracrystals occurs upon slow drying, making it possible to form complex hierarchical architectures. 

Place, publisher, year, edition, pages
Wiley, 2022
Keywords
Gamma rays, High resolution transmission electron microscopy, Reaction intermediates, Hierarchical architectures, Hydroxyl radicals, Intermediate phasis, Mesocrystal formation, Mesocrystals, Non-classical crystallization, Primary particles, Radiation-induced synthesis, γ-radiation, Γ-radiation-induced synthesis, Cerium oxide
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-313619 (URN)10.1002/anie.202112204 (DOI)000731983600001 ()34860450 (PubMedID)2-s2.0-85121556815 (Scopus ID)
Note

QC 20220609

Available from: 2022-06-09 Created: 2022-06-09 Last updated: 2023-02-03Bibliographically approved
7. Palladium-on-ceria electrocatalysts boost oxygen reduction and methanol oxidation in alkaline medium: single atom vs nanoparticle
Open this publication in new window or tab >>Palladium-on-ceria electrocatalysts boost oxygen reduction and methanol oxidation in alkaline medium: single atom vs nanoparticle
(English)Manuscript (preprint) (Other academic)
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-323380 (URN)
Note

QC 20230214

Available from: 2023-01-28 Created: 2023-01-28 Last updated: 2023-02-14Bibliographically approved
8. Using an ionomer as a size regulator in γ-radiation induced synthesis of Ag nanoparticle catalysts for oxygen reduction in anion exchange membrane fuel cells
Open this publication in new window or tab >>Using an ionomer as a size regulator in γ-radiation induced synthesis of Ag nanoparticle catalysts for oxygen reduction in anion exchange membrane fuel cells
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-323381 (URN)
Note

QC 20230214

Available from: 2023-01-28 Created: 2023-01-28 Last updated: 2023-02-14Bibliographically approved
9. In-situ loading synthesis of graphene supported PtCu nanocube and its high activity and stability for methanol oxidation reaction
Open this publication in new window or tab >>In-situ loading synthesis of graphene supported PtCu nanocube and its high activity and stability for methanol oxidation reaction
Show others...
2021 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 595, p. 107-117Article in journal (Refereed) Published
Abstract [en]

A perfect PtCu nanocube with partial hollow structure was prepared by hydrothermal reaction and its electrocatalytic methanol oxidation reaction (MOR) was studied. The appropriate concentration of shape-control additives KI and triblock pluronic copolymers, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO19-PPO69-PEO19) (P123) play crucial roles in the final product morphology. The PtCu nanocubes can be perfectly in situ immobilizedonto graphene under the action of P123 while the structure and cubic morphologyremain unchanged. The electrochemical tests suggest that the obtained PtCu nanocube (PtCu-NCb) exhibits better MOR activity and stability than PtCu hexagon nanosheet (PtCu-NSt), PtCu nanoellipsoid (PtCu-NEs) and commercial Pt/C in alkaline medium. When in situ immobilized onto graphene, the MOR catalytic activity and stability of PtCu cubes are further improved. The markedly enhanced electrocatalytic activity and durability maybe attributed to the special cubic morphology with partial hollow structure enclosed by highly efficient facet and the probably the synergistic effect of PtCu and intermediate state CuI decorated on the surface and graphene.

Place, publisher, year, edition, pages
Elsevier BV, 2021
Keywords
Morphology maintain, PtCu nanocubes, CuI, Methanol oxidation reaction, In situ loading
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-295821 (URN)10.1016/j.jcis.2021.03.129 (DOI)000641080400001 ()33819686 (PubMedID)2-s2.0-85103695604 (Scopus ID)
Note

QC 20210528

Available from: 2021-05-28 Created: 2021-05-28 Last updated: 2023-02-03Bibliographically approved

Open Access in DiVA

kappa_Yi Yang(30555 kB)880 downloads
File information
File name FULLTEXT01.pdfFile size 30555 kBChecksum SHA-512
4f1e1e4d05aced1438a56107ea4e796753abd03f5ca934a5caf484ec11d34b60a46d27a95fdf54e471cd6ce26ae144a4b625e006e821062d3614ecb49097efdc
Type fulltextMimetype application/pdf

Authority records

Yang, Yi

Search in DiVA

By author/editor
Yang, Yi
By organisation
Applied Physical Chemistry
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 880 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1583 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf