kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessing the State of Autovectorization Support based on SVE
Forschungszentrum Julich, Julich Supercomp Ctr, Julich, Germany..
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC.ORCID-id: 0000-0001-7296-7817
2022 (Engelska)Ingår i: 2022 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2022), Institute of Electrical and Electronics Engineers (IEEE) , 2022, s. 556-562Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

So-called SIMD instructions, which trigger operations that process in each clock cycle a data tuple, have become widespread in modern processor architectures. In particular, processors for high-performance computing (HPC) systems rely on this additional level of parallelism to reach a high throughput of arithmetic operations. Leveraging these SIMD instructions can still be challenging for application software developers. This challenge has become simpler due to a compiler technique called auto-vectorization. In this paper, we explore the current state of auto-vectorization capabilities using state-of-the-art compilers using a recent extension of the Arm instruction set architecture, called SVE. We measure the performance gains on a recent processor architecture supporting SVE, namely the Fujitsu A64FX processor.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE) , 2022. s. 556-562
Serie
IEEE International Conference on Cluster Computing, ISSN 1552-5244
Nyckelord [en]
ISA, auto-vectorization, Arm, SVE
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:kth:diva-324314DOI: 10.1109/CLUSTER51413.2022.00073ISI: 000920273100058Scopus ID: 2-s2.0-85140893554OAI: oai:DiVA.org:kth-324314DiVA, id: diva2:1739621
Konferens
IEEE International Conference on Cluster Computing (CLUSTER), SEP 06-09, 2022, Heidelberg, GERMANY
Anmärkning

Part of proceedings: ISBN 978-1-6654-9856-2QC 20230227

Tillgänglig från: 2023-02-27 Skapad: 2023-02-27 Senast uppdaterad: 2023-02-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Pleiter, Dirk

Sök vidare i DiVA

Av författaren/redaktören
Pleiter, Dirk
Av organisationen
Parallelldatorcentrum, PDC
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 43 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf