kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A dual resolution phase-field solver for wetting of viscoelastic droplets
KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0002-4346-4732
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0003-4317-1726
2022 (English)In: International Journal for Numerical Methods in Fluids, ISSN 0271-2091, E-ISSN 1097-0363, Vol. 94, no 9, p. 1517-1541Article in journal (Refereed) Published
Abstract [en]

We present a new and efficient phase-field solver for viscoelastic fluids with moving contact line based on a dual-resolution strategy. The interface between two immiscible fluids is tracked by using the Cahn-Hilliard phase-field model, and the viscoelasticity incorporated into the phase-field framework. The main challenge of this approach is to have enough resolution at the interface to approach the sharp-interface methods. The method presented here addresses this problem by solving the phase field variable on a mesh twice as fine as that used for the velocities, pressure, and polymer-stress constitutive equations. The method is based on second-order finite differences for the discretization of the fully coupled Navier–Stokes, polymeric constitutive, and Cahn–Hilliard equations, and it is implemented in a 2D pencil-like domain decomposition to benefit from existing highly scalable parallel algorithms. An FFT-based solver is used for the Helmholtz and Poisson equations with different global sizes. A splitting method is used to impose the dynamic contact angle boundary conditions in the case of large density and viscosity ratios. The implementation is validated against experimental data and previous numerical studies in 2D and 3D. The results indicate that the dual-resolution approach produces nearly identical results while saving computational time for both Newtonian and viscoelastic flows in 3D. 

Place, publisher, year, edition, pages
Wiley , 2022. Vol. 94, no 9, p. 1517-1541
Keywords [en]
Cahn–Hilliard equation, dual resolution, dynamic contact angle, viscoelastic fluids, wetting, Constitutive equations, Contact angle, Domain decomposition methods, Navier Stokes equations, Viscoelasticity, Cahn-Hilliard equation, Dual resolutions, International journals, Moving contact lines, Phase fields, Resolution strategy, Vis-coelastic fluids, Visco-elastic fluid, Viscoelastics
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-324155DOI: 10.1002/fld.5100ISI: 000802029900001PubMedID: 36247354Scopus ID: 2-s2.0-85130812076OAI: oai:DiVA.org:kth-324155DiVA, id: diva2:1739675
Note

QC 20230227

Available from: 2023-02-27 Created: 2023-02-27 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Numerical simulation of non-Newtonian fluids flow over surfaces
Open this publication in new window or tab >>Numerical simulation of non-Newtonian fluids flow over surfaces
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Wetting of surfaces by droplets of non-Newtonian fluids is important for various industrial and natural processes such as coating and cleaning of surfaces and inkjet printing, to name a few. Viscoelastic fluids are compounds of a very small amount of polymers and solvent. They are categorized as non-Newtonian fluids, and they exhibit both elasticity and shear dependent viscosity. Despite their relevance and abundance in our environment, dynamic wetting of viscoelastic fluids has been studied much less than that of the Newtonian fluids. Furthermore, many of the viscoelastic studies make simplifying assumptions of the contact line movement, for example, a constant value of the contact angle independent of the spreading speed of the droplet.

In this thesis work, we implement a numerical framework for dynamic contact line problems of viscoelastic fluids, taking into account contact line friction or contact line hysteresis when necessary. We solve the coupled Cahn-Hilliard, Navier-Stokes and viscoelastic constitutive models to reveal detailed information about the flow physics, such as the polymeric stress distributions inside the drops. Especially interesting is the vicinity of discontinuity regions e.g. the contact-line and liquid bridge between the coalescing drops. First, we present the idea of dual-resolution grids to address the high interfacial resolution requirements for a viscoelastic two-phase flow. In particular, a dual-resolution algorithm is presented and validated for the wetting of viscoelastic fluids. Secondly, we apply our algorithm to investigate the effect of non-Newtonian properties on jumping of two merging droplets from a superhydrophobic surface, a problem which might be of interest for self-cleaning surfaces. In the last part, the physical effects of non-Newtonian properties are investigated on both the initial wetting regime on a smooth hydrophilic surface and the pinning and depinning of a droplet in the presence of the contact angle hysteresis.

Abstract [sv]

Vätning av icke-newtonska vätskor på en yta är ett viktigt och vanligt förekommande problem i naturliga och industriella processer såsom ytrengöring, olika ytbeläggningar, bläckstråleskrivare för att nämna några exempel. Viskoelastiska vätskor består av polymerer och lösningsmedel och hör till kategorin icke-Newtonska vätskor, och de uppvisar båda elasticitet och skjuvningsberoende viskositet. Trots icke-Newtonska vätskors relevans i vardagen har deras vätningsegenskaper studerats mycket mindre hittils än processen för Newtonska vätskor. Vidare så används ofta förenklade antaganden av kontaktlinjens rörelse, såsom ett konstant värde av kontaktvinkeln som inte beror på spridningshastigheten.

I detta arbete implementerar vi en numerisk lösningsmetod för dynamiska vätningsproblem av viskoelastiska droppar. Vi löser de kopplade Cahn-Hilliard, Navier-Stokes och viskoelastiska konstitutiva ekvationerna tillsammans för att få fram detaljerad information av strömningen såsom fördelningen av viskoelastiska spänningar inuti droppen. Speciellt intressant är att fokusera på områden där egenskaperna varierar diskontinuerligt, till exempel kontaktlinjer och i vätskebryggan mellan koalescerande droppar. Först presenterar vi tanken bakom duala nät för att öka upplösningen nära ytan i viskoelastiska tvåfasflöden. I synnerhet presenterar vi ekvationerna och valideringen av den numeriska lösaren för vätning av viskoelastiska vätskor. I den andra delen undersöker vi effekten av de icke-newtonska egenskaperna påverkar två koalescerande droppar som hoppar från en superhydrofob yta, ett problem av potentiellt intresse för självrengörande ytor. I den sista delen undersöks de viskoelastiska effekternas betydelse för snabba vätningsprocesser på en slät hydrofil yta samt för rörelsen av droppar med kontaktlinjehysteres.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 67
Series
TRITA-SCI-FOU ; 2023:43
Keywords
dynamic wetting, viscoelasticity, non-Newtonian fluids, contact- angle hysteresis, droplet spreading, self-propelled jumping, dynamisk vätning, viskoelasticitet, icke-Newtonska vätskor, kontaktlinjehysteres, dropparnas spridning på ytor, spontan hoppning av droppar från ytor
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-334511 (URN)978-91-8040-682-6 (ISBN)
Public defence
2023-09-15, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 230824

Available from: 2023-08-24 Created: 2023-08-21 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Bazesefidpar, KazemBrandt, LucaTammisola, Outi

Search in DiVA

By author/editor
Bazesefidpar, KazemBrandt, LucaTammisola, Outi
By organisation
SeRC - Swedish e-Science Research CentreLinné Flow Center, FLOWEngineering MechanicsFluid Mechanics and Engineering Acoustics
In the same journal
International Journal for Numerical Methods in Fluids
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 181 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf