kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dynamic testing and numerical modelling of a pedestrian timber bridge at different construction stages
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0009-0002-1067-9697
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0003-2104-382X
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.ORCID iD: 0000-0002-5347-4467
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0003-2347-0681
2023 (English)In: Engineering structures, ISSN 0141-0296, E-ISSN 1873-7323, Vol. 279, article id 115429Article in journal (Refereed) Published
Abstract [en]

This article studies the dynamic properties of a single span pedestrian timber bridge by in-situ testing and numerical modelling. The in-situ dynamic tests are performed at four different construction stages: (1) on only the timber structure, (2) on the timber structure with the railings, (3) on the timber structure with railings and an asphalt layer during warm conditions and (4) same as stage 3 but during cold conditions. Finite element models for the four construction stages are thereafter implemented and calibrated against the experimental results. The purpose of the study is to better understand how the different parts of the bridge contribute to the overall dynamic properties. The finite element analysis at stage 1 shows that longitudinal springs must be introduced at the supports of the bridge to get accurate results. The experimental results at stage 2 show that the railings contributes to 10% of both the stiffness and mass of the bridge. A shell model of the railings is implemented and calibrated in order to fit with the experimental results. The resonance frequencies decrease with 10–20% at stage 3 compared to stage 2. At stage 3 it is sufficient to introduce the asphalt as an additional mass in the finite element model. For that, a shell layer with surface elements is the best approach. The resonance frequencies increase with 15–30% between warm (stage 3) and cold conditions (stage 4). The stiffness of the asphalt therefore needs to be considered at stage 4. The continuity of the asphalt layer could also increase the overall stiffness of the bridge. The damping ratios increase at all construction stages. They are around 2% at warm conditions and around 2.5% at cold conditions for the finished bridge.

Place, publisher, year, edition, pages
Elsevier BV , 2023. Vol. 279, article id 115429
Keywords [en]
Pedestrian bridge, Timber, Railings, Asphalt, Dynamic analysis, Finite element modelling
National Category
Civil Engineering
Research subject
Civil and Architectural Engineering, Structural Engineering and Bridges
Identifiers
URN: urn:nbn:se:kth:diva-324493DOI: 10.1016/j.engstruct.2022.115429ISI: 000954303900001Scopus ID: 2-s2.0-85145980986OAI: oai:DiVA.org:kth-324493DiVA, id: diva2:1740936
Funder
Swedish Transport Administration, BBT 2019- 028J. Gust. Richert stiftelse, 2020-00611
Note

QC 20230426

Available from: 2023-03-02 Created: 2023-03-02 Last updated: 2023-12-07Bibliographically approved
In thesis
1. Dynamic properties of two pedestrian timber bridges: Experimental and numerical analysis at several stages of construction
Open this publication in new window or tab >>Dynamic properties of two pedestrian timber bridges: Experimental and numerical analysis at several stages of construction
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Pedestrian bridges can beneficially be made from timber in order for our society to reach a sustainable future. This positive development is partly made possible due to advances in engineered wood products (e.g. glued laminated timber) and the possibilities for pre-fabrication of structural parts. Timber bridges, especially long and slender, can however be susceptible to uncomfortable vibrations which could be solved by more accurate dynamic analysis in the design phase. Common issues reported by previous research are the difficulties in accurate predictions of the natural frequencies without calibration against experimental results. The purpose with the present research work is therefore to perform dynamic analysis of two pedestrian timber bridges at different construction stages in order to better understand the influence of different structural parts in the numerical models. The results show that the estimated and applied values for the densities of the timber (Norway spruce and Scots pine) are slightly higher than in the norm. Both bridges required calibration of longitudinal stiffness at the supports for the numerical results to agree with the experiments. The railings could be omitted from the numerical models for both bridges, which is in contrast with common engineering practise where they are often considered as an additional mass. The stiffness of the asphalt was required at low temperatures (10 °C and 0 °C). However, the asphalt could be modelled as an additional mass at a high temperature (40 °C) where special care also could be given to the effects of the composite cross-section geometry (timber deck and asphalt). The level of detail for the modelling of the truss joints, the connection truss/crossbeam and the connection deck/crossbeams proved to be an important issue for the Stela bridge. The damping ratios (ζ) increased with an asphalt layer on the bridge and are slightly higher than the values recommended by the norms. This may be relevant to consider in the design phase. However, it may be difficult to derive general conclusions for other pedestrian timber bridges since this thesis only concerns case studies of two bridges. More studies of other types of bridges are therefore necessary in order to confirm or disprove the present results

Abstract [sv]

Gång- och cykelbroar kan med fördel konstrueras med trä för att vårt samhälle ska nå en hållbar framtid. Denna positiva utveckling är delvis möjlig tack vare framsteg inom produktion av träbaserade konstruktionselement (t.ex. limträ) och möjligheter för pre-fabricering av konstruktionsdelar. Träbroar, särskilt långa och slanka, kan dock vara känsliga för obekväma vibrationer vilket kan lösas genom en förbättrad dynamisk bedömning i projekteringsfasen. Vanliga problem som rapporterats i tidigare forskning är svårigheterna med att förutspå egenfrekvenserna utan kalibrering gentemot experimentella resultat. Syftet med det aktuella forskningsarbetet är därför att genomföra dynamisk analys av två gång- och cykelbroar i trä vid olika konstruktionsfaser för att bättre kunna förstå de olika konstruktionselementens inverkan i de numeriska modellerna. Resultaten visar att de uppskattade och tillämpade värdena för träets densitet (gran och tall) är något högre än i normen. Båda broarna krävde kalibrering av longitudinell styvhet vid stöden för att de numeriska resultaten skulle överensstämma med experimenten. Räckena kunde utelämnas från de numeriska modellerna för båda broarna, vilket är i motsats till ingenjörspraxis där de ofta betraktas som en extra massa. Beaktning av asfaltens styvhet krävdes vid låga temperaturer (10 ◦C och 0 ◦C). Asfalten kunde dock modelleras som en extra massa vid hög temperatur (40 ◦C) där särskild hänsyn även kan ges åt effekterna av den sammansatta tvärsnittsgeometrin (trädäck och asfalt). Detaljnivån för modelleringen av fackverkets knutpunkter, kopplingen fackverk/tvärbalk och kopplingen däck/tvärbalkar visade sig vara en viktig faktor för Stela bro. Dämpningen (ζ) ökade med ett asfaltlager på bron vilket indikerar att detta kan vara relevant att ta hänsyn till i projekteringsfasen. Det kan emellertid vara svårt att dra generella slutsatser om andra gång- och cykelbroar i trä eftersom denna avhandling enbart beaktar fallstudier av två broar. Ytterligare studier av andra typer av broar är därmed nödv¨andiga för att bekräfta eller motbevisa de givna resultaten.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 44
Series
TRITA-ABE-DLT ; 238
Keywords
Dynamic analysis, Modal analysis, Pedestrian bridge, Timber, Railings, Asphalt, Slip modulus, Finite element modelling, Dynamisk analys, Modal analys, Gång- och cykelbro, Trä, Räcken, Asfalt, Förskjutningsmodul, Finita element modellering.
National Category
Civil Engineering
Research subject
Civil and Architectural Engineering, Structural Engineering and Bridges
Identifiers
urn:nbn:se:kth:diva-324494 (URN)978-91-8040-512-6 (ISBN)
Presentation
2023-04-03, M108, Brinellvägen 23, KTH Campus, https://kth-se.zoom.us/j/67831503251, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
J. Gust. Richert stiftelse, 2020-00611Swedish Transport Administration, BBT 2019-028
Note

QC230303

Available from: 2023-03-03 Created: 2023-03-02 Last updated: 2023-03-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bergenudd, JensBattini, Jean-MarcCrocetti, RobertoPacoste, Costin

Search in DiVA

By author/editor
Bergenudd, JensBattini, Jean-MarcCrocetti, RobertoPacoste, Costin
By organisation
Structural Engineering and BridgesBuilding Materials
In the same journal
Engineering structures
Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 337 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf