kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Precipitation Kinetics During Post-heat Treatment of an Additively Manufactured Ferritic Stainless Steel
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0002-9215-5928
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0001-5040-2399
Show others and affiliations
2022 (English)In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 53, no 8, p. 3073-3082Article in journal (Refereed) Published
Abstract [en]

The microstructure response of laser-powder bed fusion (L-PBF)-processed ferritic stainless steel (AISI 441) during post-heat treatments is studied in detail. Focus is on the precipitation kinetics of the Nb-rich phases: Laves (Fe2Nb) and the cubic carbo-nitride (NbC), as well as the grain structure evolution. The evolution of the precipitates is characterized using scanning and transmission electron microscopy (SEM and TEM) and the experimental results are used to calibrate precipitation kinetics simulations using the precipitation module (TC-PRISMA) within the Thermo-Calc Software package. The calculations reproduce the main trend for both the mean radii for the Laves phase and the NbC, and the amount of Laves phase, as a function of temperature. The calibrated model can be used to optimize the post-heat treatment of additively manufactured ferritic stainless steel components and offer a creator tool for process and structure linkages in an integrated computational materials engineering (ICME) framework for alloy and process development of additively manufactured ferritic steels.

Place, publisher, year, edition, pages
Springer Nature , 2022. Vol. 53, no 8, p. 3073-3082
Keywords [en]
Additives, Binary alloys, Ferrite, Heat treatment, Kinetics, Niobium alloys, Niobium compounds, Scanning electron microscopy, Ferritic stainless steel, Laser powders, Laves phasis, Laves-phase, Post heat-treatment, Post-heat treatment, Powder bed, Precipitation kinetics, Rich phase, Structure evolution, High resolution transmission electron microscopy
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-324569DOI: 10.1007/s11661-022-06727-wISI: 000805908200002Scopus ID: 2-s2.0-85131557415OAI: oai:DiVA.org:kth-324569DiVA, id: diva2:1742034
Note

QC 20230308

Available from: 2023-03-08 Created: 2023-03-08 Last updated: 2023-04-04Bibliographically approved
In thesis
1. Integrated Computational and Experimental Study of Additively Manufactured Steels
Open this publication in new window or tab >>Integrated Computational and Experimental Study of Additively Manufactured Steels
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The design freedom Additive Manufacturing (AM) offers provides new solutions for improving functionality in industrial applications. It also offers unique opportunities when it comes to materials design.

Powder Bed Fusion – Laser Beam (PBF-LB) is currently one of the most popular commercial AM techniques for metallic materials partly due to the relatively low surface roughness and the large design flexibility. However, the number of materials suitable for the PBF-LB process is still rather low and to accelerate the development of grades tailored for this AM process, dedicated computational tools for alloy design are needed. Of importance for materials design, is computational thermodynamics and kinetics coupled with CALPHAD materials descriptions since it enables calculations for multicomponent materials making it possible to predict the effect of varying composition.

In this thesis, computational thermodynamic and kinetics coupled with materials characterization are applied to study the microstructure evolution during PBF-LB. Two material classes are in focus – hot-work tool steels and ferritic stainless steels. For the hot-work tool steel, the cooling rates during PBF-LB processing are high enough to induce martensite transformation and in the as-built microstructure a martensitic matrix is observed and some fraction of retained austenite. A solidification sub-structure due to micro-segregation during printing is also observed. Solidification calculations are performed to predict the micro-segregation showing agreement with experimental measurements. The segregation results are then used as input to a semi-empirical martensite start temperature model making it possible to explain the location and amount of retained austenite.

In addition to compositional optimization, a computational framework for AM alloy design needs to include the possibility to tailor the AM post heat treatments. An alternative to the conventional hardening treatment is thus studied in the current work. A model for precipitation kinetics is combined with experimental characterization to explore the effect of tempering on the as-built microstructure in comparison to the tempering effect on an austenitized microstructure. The results show that the precipitation kinetics is strongly dependent on the starting structure and that direct tempering of the as-built microstructure changes the precipitation sequence compared to the conventional heat treatment route. The calculations reproduce this result suggesting that it is a thermodynamic effect stemming from different matrix compositions.

The other material class, the ferritic stainless steels, is studied in terms of its response to post-heat treatments. The as-built microstructure is characterized by high dislocation density and a fine grain structure in some cases as well as a solidification sub-structure. The mechanical properties of the as-built material are in general good for these steels, however, stress relieving is most often a required post process for the as-built components which may decrease the mechanical properties. To maximize the gained benefits from the unique process condition of PBF-LB, simulations are applied to study the possibility of post heat treatment optimization.

To construct a computational framework for AM materials design, multiscale modeling capabilities are needed. This work shows the value of computational thermodynamics and kinetics for understanding the materials behavior on the microscale and hence, contributes to the construction of such a framework. By understanding the physical metallurgy, and enable modeling of the AM processes, the industrialization of AM can be accelerated.

Abstract [sv]

De designmöjligheter som additiv tillverkning (AM) erbjuder bidrar till nya lösningar som kan förbättra funktionaliteten i industriella applikationer. Det ger också unika möjligheter när det kommer till materialdesign.

Powder Bed Fusion – Laser Beam (PBF-LB) är för närvarande en av de mest populära kommersiella AM-teknikerna för metalliska material, delvis på grund av relativt bra ytfinhet och stor designflexibilitet. Antalet material som lämpar sig för PBF-LB-processen är dock fortfarande ganska få och för att påskynda utvecklingen av material skräddarsydda för AM-processen behövs dedikerade beräkningsverktyg för legeringsdesign. Viktigt för materialdesign är beräkningstermodynamik och kinetik i kombination med CALPHAD-beskrivningar eftersom det möjliggör beräkningar för flera olika materialsammansättning vilket i sin tur gör det möjligt att förutsäga effekten av olika legeringselement.

I den här avhandlingen tillämpas termodynamiska och kinetiska beräkningar i kombination med materialkarakterisering för att studera mikrostrukturutvecklingen under PBF-LB. Två materialklasser står i fokus – varmbearbetningsverktygsstål och ferritiska rostfria stål. För det varmbearbetade verktygsstålet är kylningshastigheterna under PBF-LB-processen tillräckligt höga för att inducera martensitomvandling och den resulterande mikrostrukturen består sedan av martensit och en del rest-austenit. En stelningssubstruktur orsakad av mikrosegregering under stelning observeras också. Stelningsberäkningar utförs för att förutsäga mikrosegregeringen och överenstämmelse med experimentella mätningar erhålls. Segregationsresultaten används sedan som indata till en semi-empirisk martensit-start-temperatur-modell som gör det möjligt att förklara mängden och lokaliseringen av rest-austeniten.

Ett beräkningsramverk för materialdesign för AM måste även omfatta möjligheten att skräddarsy efter-värmebehandlingar. Ett alternativ till den konventionella härdningsbehandlingen studeras därför i det här arbetet. En modell för utskiljningskinetik kombineras med experimentell karakterisering för att utforska effekten av anlöpning på AM-mikrostrukturen i jämförelse med effekten av anlöpning på en austenitiserad mikrostruktur. Resultaten visar att utskiljningsskinetiken är starkt beroende av startstrukturen och att direkt anlöpning av AM-mikrostrukturen förändrar utskiljningssekvensen jämfört med den konventionella värmebehandlingen vilket beräkningarna också visar.

Den andra materialklassen, de ferritiska rostfria stålen, studeras i termer av deras respons på efter-värmebehandlingar. Denna AM-mikrostruktur kännetecknas av hög dislokationsdensitet och en finkornig struktur, i vissa fall, samt en stelningssubstruktur. De mekaniska egenskaperna hos AM-materialet är i allmänhet bra för dessa stål, men avspänningsvärmebehandling är oftast en nödvändig efterbehandling-process för komponenterna, vilket kan påverka de mekaniska egenskaperna. För att maximera de erhållna fördelarna med PBF-LB:s unika processvillkor används simuleringarna för att studera möjligheten att optimering efter-värmebehandlingen.

För att konstruera ett beräkningsramverk för AM-materialdesign behövs flerskaliga modelleringsmöjligheter. Detta arbete visar värdet av beräkningstermodynamik och kinetik för att förstå materialens beteende på mikroskalan och bidrar därmed till ett sådant ramverk. Genom att förstå den fysiskaliska metallurgin och möjliggöra modellering av AM-processerna kan industrialiseringen av AM påskyndas.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. p. 39
Series
TRITA-ITM-AVL ; 2023:11
Keywords
Additive Manufacturing, Powder Bed Fusion – Laser Beam, Computational Thermodynamics and Kinetics, Hot-work Tool Steel, Ferritic Stainless Steel, Additiv tillverkning, Powder Bed Fusion – Laser Beam, Tillämpad termodynamik och kinetik, Varmarbetsverktygsstål, Ferritiska rostfria stål
National Category
Materials Engineering Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-325332 (URN)978-91-8040-526-3 (ISBN)
Public defence
2023-04-27, Sal F3 / https://kth-se.zoom.us/j/65939831819, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2023-04-05 Created: 2023-04-04 Last updated: 2023-04-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Chou, Chia-YingHolländer Pettersson, NiklasOdqvist, JoakimLindwall, Greta

Search in DiVA

By author/editor
Chou, Chia-YingHolländer Pettersson, NiklasOdqvist, JoakimLindwall, Greta
By organisation
Materials Science and Engineering
In the same journal
Metallurgical and Materials Transactions. A
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 62 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf