kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Solidification modes during additive manufacturing of steel revealed by high-speed X-ray diffraction
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Structures.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0001-5040-2399
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering. Indian Inst Technol, Dept Met Engn & Mat Sci, Mumbai 400076, Maharashtra, India..ORCID iD: 0000-0001-7164-9024
Paul Scherrer Inst, Struct & Mech Adv Mat, PSI, Forschungsstr 111, CH-5232 Villigen, Switzerland..
Show others and affiliations
2023 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 246, p. 118713-, article id 118713Article in journal (Refereed) Published
Abstract [en]

Solidification during fusion-based additive manufacturing (AM) is characterized by high solidification velocities and large thermal gradients, two factors that control the solidification mode of metals and alloys. Using two synchrotron-based, in situ setups, we perform high-speed X-ray diffraction measurements to investigate the impact of the solidification velocities and thermal gradients on the solidification mode of a hot-work tool steel over a wide range of thermal conditions of relevance to AM of metals. The solidification mode of primary delta-ferrite is observed at a cooling rate of 2.12 x 104 K/s, and at a higher cooling rate of 1.5 x 106 K/s, delta-ferrite is sup-pressed, and primary austenite is observed. The experimental thermal conditions are evaluated and linked to a Kurz-Giovanola-Trivedi (KGT) based solidification model. The modelling results show that the predictions from the multicomponent KGT model agree with the experimental observations. This work highlights the role of in situ XRD measurements for a fundamental understanding of the microstructure evolution during AM and for vali-dation of computational thermodynamics and kinetics models, facilitating parameter and alloy development for AM processes.

Place, publisher, year, edition, pages
Elsevier BV , 2023. Vol. 246, p. 118713-, article id 118713
Keywords [en]
Solidification, Synchrotron X-ray diffraction, Additive manufacturing, Powder bed fusion, Steel
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-324744DOI: 10.1016/j.actamat.2023.118713ISI: 000925923000001Scopus ID: 2-s2.0-85146612048OAI: oai:DiVA.org:kth-324744DiVA, id: diva2:1743765
Note

QC 20230316

Available from: 2023-03-16 Created: 2023-03-16 Last updated: 2025-05-13Bibliographically approved
In thesis
1. Real-time tracking of additive manufacturing with high-energy X-ray techniques
Open this publication in new window or tab >>Real-time tracking of additive manufacturing with high-energy X-ray techniques
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Additive manufacturing (AM) of metals offers unique design freedom and the ability to tailor the microstructure and properties of components. However, the complex thermal histories and rapid solidification occurring during AM introduce significant challenges in microstructure control and process optimisation. To address these challenges, this work employs real-time synchrotron techniques to elucidate the rapid phenomena that occur during AM. Synchrotron techniques, including synchrotron X-ray diffraction (XRD) and synchrotron radiography, are powerful tools for investigating various AM-related phenomena such as heat source-matter interaction, melt pool behaviour, solidification, and phase transformations in real time. High resolution temporal and spatial synchrotron data enable the correlation of these phenomena with AM processing parameters, thereby advancing the understanding of the AM process and its underlying mechanisms. These insights can be instrumental in process optimisation, alloy design, and the development of computational models.

The contribution of this work to the field of real-time studies in AM is structured into two parts. First, the design and implementation of an electron beam powder bed fusion (PBF-EB) sample environment for real-time synchrotron studies are detailed in Chapter 3. Second, real-time studies of solidification and phase transformations during AM are presented in Chapter 4.

The first part of this work focuses on the design and implementation of a sample environment for real-time synchrotron studies of the PBF-EB process. The sample environment facilitates the investigation of the previously listed AM phenomena during PBF-EB at high process temperatures and under vacuum. Furthermore, it enables the characterisation of phenomena specific to PBF-EB, such as the smoke phenomenon. The design and capabilities of the device for PBF-EB processing and real-time synchrotron measurements are detailed based on collected data.

In the second part, solidification and phase transformations during AM are studied using real-time synchrotron observations in combination with thermodynamic and kinetic modelling.

The change in solidification mode of a hot work tool steel is investigated under PBF-LB processing conditions. In this study, the change from primary austenite to primary δ-ferrite is observed with increasing cooling rate. The observations are correlated with predictions from a solidification model. Furthermore, the developed PBF-EB sample environment is employed to study the solidification behaviour of the same material under a wide range of PBF-EB conditions with lower cooling rates compared to the PBF-LB conditions. The observed phase transformation behaviour is linked to thermodynamic and kinetic modelling, highlighting the importance of process-induced compositional variations.

In addition, the martensite start temperature (Ms) in iron and iron carbon alloy is investigated under PBF-LB conditions using high-speed XRD at 20 kHz. The observed phase transformations are correlated with thermal simulation results, demonstrating cooling rate and composition dependence of the Ms temperature in real-time. Understanding martensite transformation in low-alloyed compositions during PBF processing can facilitate the development of recycling-friendly materials for AM.

This thesis focuses on real-time studies of metal AM, employing synchrotron techniques and linking the results to modelling. The findings demonstrate that in-situ and operando synchrotron studies, combined with computational models accounting for thermal conditions and compositional variations, are effective tools for process and alloy development for AM.In particular, the versatility of the developed PBF-EB sample environment can facilitate future studies on a variety of AM related phenomena.

Abstract [sv]

Additiv tillverkning (AM) av metaller erbjuder unik designfrihet och möjlighet att skräddarsy mikrostrukturer och egenskaper hos komponenter. Komplexa termiska förlopp och den snabba stelningen som sker under AM medför dock betydande utmaningar vad gäller mikrostrukturkontroll och processoptimering. I detta arbete används synkrotrontekniker för att studera de snabba fenomen som uppstår under AM i realtid. Synkrotrontekniker, inklusive röntgendiffraktion (XRD) och radiografi, är kraftfulla verktyg för att undersöka AM-relaterade fenomen såsom interaktionen mellan energikälla och material, smältpoolens dynamik samt stelning och fasomvandlingar i realtid. Genom att korrelera datan med processparametrar förbättras förståelsen av AM-processen och av de mekanismer som styr. Resultaten är viktiga för processoptimering, legeringsdesign och utveckling av beräkningsmodeller.

Resultaten av detta arbete kan delas in i två delar.

Den första delen fokuserar på design och implementering av en provmiljö, en elektronstråle-printer (PBF-EB), för realtidsstudier vid synkrotronljusanläggningar (kapitel 3). Provmiljön möjliggör undersökning av ovan nämnda AM-fenomen under PBF-EB vid höga temperaturer och vakuum, samt PBF-EB-specifika effekter såsom det så kallade ”smoke”-fenomenet.Printerns design och dess kapacitet för PBF-EB-printning och synkrotronmätningar i realtid beskrivs med stöd av experimentella data.

I den andra delen studeras stelning och fasomvandlingar i AM genom synkrotronobservationer i realtid (kaptil 4), i kombination med termodynamiska och kinetiska beräkningar. Förändringen av stelningsbeteendet undersöktes i varmarbetsverktygsstål under förhållanden typiska för laserbaserad AM (PBF-LB).I denna studie observerades övergången från primär austenit till primär $\delta$-ferrit vid kylhastigheter i intervallet 2.1 x 10^4 K/s till 1.5 x 10^6 K/s. Observationerna kopplades till en stelningsmodell.Dessutom användes den utvecklade PBF-EB-provmiljön för att studera stelning hos samma verktygsstål vid kylhastigheter från 1.5 x 10^3 K/s till 1.6 x 10^4 K/s. De observerade fasomvandlingarna korrelerades med termodynamisk och kinetisk modellering, och visade på processinducerade sammansättningsvariationer. Martensitstarttemperaturen (Ms) i rent järn och Fe–C-legeringar under PBF-LB-förhållanden undersöktes med high speed-XRD vid 20 kHz. De observerade fasomvandlingarna korrelerades med termiska simuleringar och visade att Ms temperaturen beror på såväl kylhastighet som sammansättning. Förståelse av martensitomvandlingen i låglegerade stål under PBF-förhållanden kan underlätta utvecklingen av material för AM som är lättare att återvinna.

Sammanfattningsvis, den här avhandlingen fokuserar på realtidsstudier av metall-AM med hjälp av synkrotrontekniker och kopplar resultaten till modellering. Resultaten visar att in-situ- och operando-synkrotronstudier, i kombination med beräkningsmodeller som tar hänsyn till termiska förhållanden och sammansättningsvariationer, är effektiva verktyg för process- och legeringsutveckling inom AM. I synnerhet mångsidigheten hos den utvecklade PBF-EB-provmiljön möjliggör framtida studier av en mängd olika PBF- och PBF-EB-relaterade fenomen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. xii, 66
Series
TRITA-ITM-AVL ; 2025:22
Keywords
Additive manufacturing, Synchrotron X-ray techniques, Sample environment, Powder bed fusion, Phase transformations, Additiv tillverkning, Synkrotronröntgentekniker, Provmiljö, Pulverbäddsfusion, Fasomvandlingar
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-362466 (URN)978-91-8106-274-8 (ISBN)
Public defence
2025-06-05, Kollegiesalen / https://kth-se.zoom.us/j/62034810344, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2019-06068
Available from: 2025-05-14 Created: 2025-05-13 Last updated: 2025-06-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

König, Hans-HenrikHolländer Pettersson, NiklasAnanthanarayanan, DurgaLindwall, Greta

Search in DiVA

By author/editor
König, Hans-HenrikHolländer Pettersson, NiklasAnanthanarayanan, DurgaGuo, QilinLindwall, Greta
By organisation
StructuresMaterials Science and Engineering
In the same journal
Acta Materialia
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 104 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf