kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multi‐foci parallelised RESOLFT nanoscopy in an extended field‐of‐view
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics.ORCID iD: 0000-0002-9583-9022
KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0003-1769-972x
KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0002-4209-5381
Show others and affiliations
2022 (English)In: Journal of Microscopy, ISSN 0022-2720, E-ISSN 1365-2818Article in journal (Refereed) Published
Abstract [en]

Live-cell imaging of biological structures at high resolution poses challenges in the microscope throughput regarding area and speed. For this reason, different parallelisation strategies have been implemented in coordinate- and stochastictargeted switching super-resolution microscopy techniques. In this line, the molecular nanoscale live imaging with sectioning ability (MoNaLISA), based on reversible saturable optical fluorescence transitions (RESOLFT), offers 45 - 65 nm resolution of large fields of view in a few seconds. In MoNaLISA, engineered light patterns strategically confine the fluorescence to sub-diffracted volumes in a large area and provide optical sectioning, thus enabling volumetric imaging at high speeds. The optical setup presented in this paper extends the degree of parallelisation of the MoNaLISA microscope by more than four times, reaching a field-of-view of (100 - 130 mu m)(2). We set up the periodicity and the optical scheme of the illumination patterns to be power-efficient and homogeneous. In a single recording, this new configuration enables super-resolution imaging of an extended population of the post- synaptic density protein Homer1c in living hippocampal neurons. 

Place, publisher, year, edition, pages
Wiley , 2022.
National Category
Other Physics Topics
Identifiers
URN: urn:nbn:se:kth:diva-326023DOI: 10.1111/jmi.13157ISI: 000888132600001PubMedID: 36377300Scopus ID: 2-s2.0-85142437126OAI: oai:DiVA.org:kth-326023DiVA, id: diva2:1752424
Funder
EU, Horizon 2020, IMAGEOMICS 964016
Note

QC 20230426

Available from: 2023-04-21 Created: 2023-04-21 Last updated: 2023-11-15Bibliographically approved
In thesis
1. Automated super-resolution microscopy for high-throughput imaging
Open this publication in new window or tab >>Automated super-resolution microscopy for high-throughput imaging
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fluorescence microscopes enable the visualization of biological samples with high contrast by labeling specific structures with fluorescent molecules. However, the spatial resolution of widely used microscopy techniques, such as widefield and confocal microscopy, is limited by the size of a focused spot of light, which roughly corresponds to half the wavelength of the illumination. To overcome this limitation, optical fluorescence nanoscopy techniques were developed, which achieve a higher spatial resolution by switching the fluorescent molecules within the sample between bright and dark states. 

Optical fluorescence nanoscopy techniques can be divided into two categories. The first, namely coordinate-targeted nanoscopy, switches the fluorescent molecules in a spatially annotated way, where it is known where and when the switching is induced. Instead, in stochastic approaches, the emitting molecules appear randomly in the sample and their location can be annotated with high spatial precision. 

This thesis focuses on reversible saturable optical fluorescence transitions (RESOLFT), a coordinate-targeted nanoscopy technique that initially relied on a beam of light that is moved across the sample (i.e., point scanning). Beams of different shapes and wavelengths are synchronized in time to generate super-resolution images. However, this approach creates a trade-off between imaging speed and the field of view. While it can acquire small fields of view at a fast speed, imaging larger areas can take up to several minutes. To overcome this limitation, the molecular nanoscale live imaging with sectioning ability (MoNaLISA) microscope employs patterns of light to parallelize RESOLFT imaging, collecting the fluorescence at different points simultaneously.

Throughput in microscopy is characterized as the number of cells per unit of time and area that a microscope can image. Achieving high throughput enables capturing fast cell dynamics and understanding how they correlate over large fields of view, providing insights into biological processes. Therefore, in this thesis I developed strategies to increase the throughput of coordinate-targeted nanoscopy methods. 

Firstly, I was involved in the mathematical formulation of fluorophore switching and its relationship to image resolution, in order to provide a framework to relate different parameters to image quality (Paper I). Secondly, I developed ImSwitch, an open-source software for microscope control. It implements a software architecture that enables flexibility and adaptability between different microscopy modalities (Paper II). Thirdly, I built a setup that increases the field of view by more than four times than previous implementations of MoNaLISA (Paper III). Finally, I combined MoNaLISA and ImSwitch to provide a framework to parallelize image acquisition, reconstruction, and visualization using multiple computational units (Paper IV).

Abstract [sv]

Optiska fluorescensmikroskop möjliggör avbildning av biologiska prover med hög kontrast tack vare inmärkning av specifika cellulära strukturer med fluorescerance molekyler. Den spatiella upplösningen med de vanligaste mikroskopimetoderna är däremot begränsad till hur väl man kan fokusera en ljusstråle, den så kallade diffraktionsgränsen. Metoder inom fluorescensnanoskopi kan uppnå spatiella upplösningar under denna gräns genom att använda fluorescerance molekyler med ljusa och mörka tillstånd.

Koordinatriktad nanoskopi är en familj av metoder inom fluorescensnanoskopi som använder ljusstrålar med olika våglängder och former för att ta superupplösta avbildningar. Nanoskopi i levande celler är särskilt möjligt med en typ av koordinatriktad nanoskopi som kallas RESOLFT (reversible saturable optical fluorescence transitions). I mikroskopiavbildning av levande celler är det speciellt viktigt att kunna avbilda snabba och dynamiska cellulära processer, samt att samla data från ett stort antal celler per experiment för att uppnå en hög genomströmning av data. I denna riktning har MoNaLISA (molecular nanoscale live imaging with sectioning ability) utvecklats – ett mikroskop som använder stationära ljusmönster för att parallellisera RESOLFT-mikroskopi genom att spela in fluorescens från olika punkter samtidigt. 

Den här avhandlingen fokuserar på att utveckla metoder för att höja genomströmningen av koordinatriktade nanoskopimetoder. I den första studien var jag involverad i den matematiska formuleringen av växlingen mellan olika ljusa och mörka tillstånd för fluorescerande molekyler och hur detta påverkar den spatiella upplösningen i avbildningen, för att utveckla ett ramverk för att relatera olika parametrar till bildkvalitet (Paper I). I den andra studien utecklade jag ImSwitch, en open-source mjukvara för mikroskopkontroll. ImSwitch implementerar en mjukvaruarkitektur som tillåter flexibilitet och anpassningsförmåga mellan olika mikroskopimetoder (Paper II). I den tredje studien utvecklade och byggde jag ett mikroskop som ökar synfältet mer än fyra gånger jämfört med tidigare implementationer av MoNaLISA (Paper III). I den fjärde och sista studien kombinerade jag MoNaLISA och ImSwitch i ett ramverk för parallelliserad bildtagning, bildrekonstruktion och visualisering genom att använda flera datorer och beräkningsenheter (Paper IV).

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 71
Series
TRITA-SCI-FOU ; 2023:13
Keywords
RESOLFT, throughput, microscopy automation, nanoscopy
National Category
Biophysics
Research subject
Biological Physics
Identifiers
urn:nbn:se:kth:diva-326026 (URN)978-91-8040-559-1 (ISBN)
Public defence
2023-05-15, Air&Fire, Tomtebodevägen 23, Solna, 09:00 (English)
Opponent
Supervisors
Note

QC 2023-04-24

Available from: 2023-04-24 Created: 2023-04-21 Last updated: 2025-02-20Bibliographically approved
2. Investigation of Neuronal Protein Trafficking at the Molecular Scale
Open this publication in new window or tab >>Investigation of Neuronal Protein Trafficking at the Molecular Scale
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Neurons are polarized cells that encode information in the nervous system viaelectrochemical connections named synapses. The tuning of synapticconnections is enabled by a plastic protein trafficking system which operates atthe nanoscale to finely tweak the neuronal ultrastructure. Our understanding ofthe neuronal biology has certainly benefited from the advent of live-cellcompatible fluorescence techniques able to reach the molecular level. However,the neuronal trafficking system involves molecular complexes, from organelles tosynaptic modulators, which act with varying dynamics at differentspatiotemporal scales. A single technique struggles to portrait these complexphenomena since it is hard to combine molecular resolution, speed, and lowphototoxicity. Hence, their investigation often demands, together with technicaladvancements, the combination of advanced fluorescence methods withcomplementary features. In this thesis, I explore the neuronal protein traffickingsystem at the molecular scale applying cutting-edge fluorescence microscopy andspectroscopy techniques.The relationship between the geometry and dynamics of the tubular endoplasmicnetwork and the sub-compartment size of neurons is investigated using acombination of STED and parallelized RESOLFT microscopy. In addition, thethree-dimensional dynamic interaction between tubular endoplasmic reticulumand mitochondria is described.The basal activity-driven recycling of synaptic vesicles is, for the first time,monitored via event-triggered STED, an automated method able to initiate STEDimaging upon detection of events such as calcium spikes.Insights into the post-synaptic reorganization of scaffolding and skeletal proteinsupon stimulation is gained by extending the live-cell super-resolution throughputto all the dimensions with multi-foci and 3D parallelized RESOLFT.Lastly, the molecular states of Activity-Regulated Cytoskeleton-Associatedprotein (Arc) involved in distinct aspects of neuronal protein trafficking arestudied. Our observations, obtained combining distinct advanced methods asDNA-PAINT and STARSS, support a previously unexplored Arc mechanism ofaction.

Abstract [sv]

Neuroner är polariserade celler som kodar information i nervsystemet viaelektrokemiska kopplingar genom synapser. Inställningen av synaptiskaanslutningar möjliggörs av ett plastproteinhandelssystem som fungerar pånanoskala för att finjustera den neuronala ultrastrukturen. Vår förståelse av denneuronala biologin gynnades verkligen av tillkomsten av levande cell-kompatiblafluorescenstekniker som kan nå den molekylära nivån. Emellertid involverar detneuronala människohandelssystemet molekylära komplex, från organeller tillsynaptiska modulatorer, som verkar med distinkt dynamik på varierandespatiotemporala skalor. En enda teknik kämpar för att porträttera dessakomplexa fenomen eftersom det är svårt att kombinera molekylär upplösning,hastighet och mildhet. Därför kräver deras undersökning ofta, tillsammans medtekniska framsteg, kombinationen av fluorescensmetoder med komplementäraegenskaper. I avhandlingen utforskar jag det neuronala proteinhandelssystemeti molekylär skala med användning av distinkta banbrytandefluorescensmikroskopi och spektroskopitekniker. Den neuronala tubuläraendoplasmatiska nätverksgeometrin och dynamiken var relaterad tillunderavdelningens storlek genom att kombinera STED och parallelliseradRESOLFT-mikroskopi. Dessutom beskrevs den tredimensionella dynamiskainteraktionen mellan tubulärt endoplasmatiskt retikulum och mitokondrier.Den basalaktivitetsdrivna återvinningen av synaptiska vesiklar övervakades förförsta gången via händelseutlöst STED, en automatiserad metod som kan initieraSTED-avbildning vid upptäckt av händelser som kalciumspikar.Insikter i den postsynaptiska omorganiseringen av byggnadsställningar ochskelettproteiner vid stimulering erhölls och utökade genomströmningen avlevande cellers superupplösning till alla dimensioner med multifoci och 3DparallelliseradRESOLFT.Slutligen studerades de molekylära tillstånden av Activity-RegulatedCytoskeleton-Associated Protein (Arc), involverat i distinkta aspekter avneuronal proteinhandel. Våra observationer, erhållna genom att kombineradistinkta avancerade metoder som DNA-PAINT och STARSS, stödjer enbågpotential verkningsmekanism som tidigare outforskad.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023. p. 129
Series
TRITA-SCI-FOU 2023:62
Keywords
Endoplasmic Reticulum, Mitochondria, Arc (Activity-regulated cytoskeleton-associated protein), oligomerization, pRESOLFT, STED, event-triggered FCS, DNA-PAINT, STARSS, molecular dynamics simulations
National Category
Biophysics
Research subject
Physics, Biological and Biomedical Physics
Identifiers
urn:nbn:se:kth:diva-339643 (URN)978-91-8040-771-7 (ISBN)
Public defence
2023-12-15, Air&Fire, Tomtebodavägen 23,171 65, Solna, 09:00 (English)
Opponent
Supervisors
Note

QC 2023-11-17

Available from: 2023-11-17 Created: 2023-11-15 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Moreno, Xavier CasasPennacchietti, FrancescaMinet, GuillaumeDamenti, MartinaOllech, DirkBarabas, FedericoTesta, Ilaria

Search in DiVA

By author/editor
Moreno, Xavier CasasPennacchietti, FrancescaMinet, GuillaumeDamenti, MartinaOllech, DirkBarabas, FedericoTesta, Ilaria
By organisation
Science for Life Laboratory, SciLifeLabBiophysics
In the same journal
Journal of Microscopy
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 98 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf