Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Semantic 3D Grid Maps for Autonomous Driving
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL. Scania CV AB, S-15187 Södertälje, Sweden..
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.ORCID-id: 0000-0002-3432-6151
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.ORCID-id: 0000-0003-4815-9689
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Robotik, perception och lärande, RPL.ORCID-id: 0000-0002-1170-7162
2022 (engelsk)Inngår i: 2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), Institute of Electrical and Electronics Engineers (IEEE) , 2022, s. 2681-2688Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Maps play a key role in rapidly developing area of autonomous driving. We survey the literature for different map representations and find that while the world is threedimensional, it is common to rely on 2D map representations in order to meet real-time constraints. We believe that high levels of situation awareness require a 3D representation as well as the inclusion of semantic information. We demonstrate that our recently presented hierarchical 3D grid mapping framework UFOMap meets the real-time constraints. Furthermore, we show how it can be used to efficiently support more complex functions such as calculating the occluded parts of space and accumulating the output from a semantic segmentation network.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE) , 2022. s. 2681-2688
Serie
IEEE International Conference on Intelligent Transportation Systems-ITSC, ISSN 2153-0009
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-326399DOI: 10.1109/ITSC55140.2022.9922537ISI: 000934720602102Scopus ID: 2-s2.0-85141822719OAI: oai:DiVA.org:kth-326399DiVA, id: diva2:1754024
Konferanse
IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), OCT 08-12, 2022, Macau, PEOPLES R CHINA
Merknad

QC 20230502

Tilgjengelig fra: 2023-05-02 Laget: 2023-05-02 Sist oppdatert: 2023-05-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Khoche, AjinkyaWozniak, Maciej K.Duberg, DanielJensfelt, Patric

Søk i DiVA

Av forfatter/redaktør
Khoche, AjinkyaWozniak, Maciej K.Duberg, DanielJensfelt, Patric
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 117 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf