kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Coated UN microspheres embedded in UO2 matrix as an innovative advanced technology fuel: Early progress
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Engineering. Westinghouse Electric Sweden AB.ORCID iD: 0000-0003-1628-3001
Chalmers University of Technology.
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Engineering.
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Engineering.ORCID iD: 0000-0002-6082-8913
Show others and affiliations
2021 (English)In: TopFuel 2021 Light Water Reactor Fuel Performance Conference, Santander, Spain, October 24-28, 2021., 2021, article id 98Conference paper, Published paper (Refereed)
Abstract [en]

Uranium nitride (UN)-uranium dioxide (UO2) composites have been proposed as an innovative advanced technology fuel (ATF) option for light water reactors (LWRs). However, the interdiffusion of oxygen and nitrogen during fabrication result in the formation of α-U2N3. A way to avoid this interaction is to coat the UN with a material that is impermeable to oxygen and nitrogen, has a high melting point, high thermal conductivity, and reasonable low neutron cross-section. Among many candidates,refractory metals may be the first option. In this study, we present an early progressresult of fabricating an innovative ATF concept: coated UN microspheres embedded in UO2 matrix. To do so, the following steps are performed: 1) diffusion couple experiments of UN-X-UO2 (X=W, Mo, Ta, Nb, V) to evaluate the interactions between the coating candidates (X) and the fuels; 2) selection of the most promising candidates; 3) use a surrogate material (ZrN microspheres) to develop processes to coat the microspheres with nanopowders: dry and wet methods; 4) coating the UN microspheres with a selected method; 5) finally, sinter a coated UN-UO2 composite using spark plasma sintering (SPS), and compare the results with an uncoated UNUO2 composite sintered at the same SPS conditions (1500 °C, 80 MPa, 3 min,vacuum). The diffusion couple results indicate W and Mo as the most promising candidates, with the wet method showing the smoothest surface. So, dense (~95 %TD) W/UN-UO2 and Mo/UN-UO2 were sintered and the preliminary results show that the tungsten coating was not efficient due to poor adhesion. Conversely, the Mo coating (~15 µm) was efficient against the α-U2N3 formation. Therefore, this early progress indicates the possibility of fabricating an innovative ATF concept using a low cost and potentially applicable coating method.

Place, publisher, year, edition, pages
2021. article id 98
Series
Track 3. Evolutionary and innovative advanced technology fuels (eATF)
Keywords [en]
Composite UN-UO2, UN microsphere, accident tolerant fuel, coating technology
National Category
Composite Science and Engineering
Research subject
Physics, Nuclear Engineering
Identifiers
URN: urn:nbn:se:kth:diva-326596OAI: oai:DiVA.org:kth-326596DiVA, id: diva2:1755117
Conference
TopFuel 2021 Light Water Reactor Fuel Performance.
Funder
Swedish Foundation for Strategic Research, ID17-0078
Note

Part of proceedings: ISBN 978-92-95064-35-5, QC 20230508

Available from: 2023-05-05 Created: 2023-05-05 Last updated: 2023-05-12Bibliographically approved
In thesis
1. Development of Encapsulated UN-UO₂ Accident Tolerant Fuel
Open this publication in new window or tab >>Development of Encapsulated UN-UO₂ Accident Tolerant Fuel
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Accident tolerant fuels (ATFs) are designed to endure a severe accident in the reactor core longer than the standard UO2-Zr alloy systems used in light water reactors (LWRs). Composite fuels such as UN-UO2 are being considered as an ATF concept to address the lower oxidation resistance of the UN fuel from a safety perspective for use in LWRs, whilst improving the in-reactor behaviour of the UO2 fuel. The main objective of this thesis is to fabricate, characterise, and evaluate an innovative ATF concept for LWRs: encapsulated UN spheres as additives for the standard UO2 fuel. Several development steps were applied to understand the influence of the sintering parameters on the UN-UO2 fuel microstructure, evaluate potential coating candidates to encapsulate the UN spheres by different coating methodologies, assess the oxidation resistance of the composites, and estimate the thermal behaviours of uncoated and encapsulated UN-UO2 fuels. All composites were sintered by the spark plasma sintering method and characterised by many complementary microstructural techniques. Molybdenum and tungsten are shown, using a combination of modelling and experiments, to be good material candidates for the protective coating. It is shown that the powder coating methods form a thick, dense, and non-uniform coating layer onto spheres, while the chemical and vapour deposition methods provide thinner and more uniform layers. Finite element modelling indicates that the fuel centreline temperature may be reduced by more than 400 K when 70 wt% of encapsulated spheres are used as compared to the reference UO2. Moreover, the severity of the degradation of the nitride phase is reduced when embedded in a UO2 matrix and may also be reduced even more by the presence of a coating layer. These results contribute to further developments in methodologies for fabricating, characterising, and evaluating accident tolerant fuels within LWRs.

Abstract [sv]

Olyckstoleranta bränslen (ATF) är utformade för att motstå en allvarlig olycka i reaktorhärden längre än de standard UO2-Zr system som används i lättvattenreaktorer (LWR) idag. Kompositbränslen som UN-UO2 anses vara ett ATF koncept som kan förbättra den lägre oxidationsbeständigheten hos UN bränslet ur ett säkerhetsperspektiv för användning i LWR, samtidigt som UO2-bränslets beteende och prestanda i reaktorn förbättras. Huvudsyftet med denna avhandling är att tillverka, karakterisera och utvärdera ett innovativt ATF-koncept för LWR: inkapslade UN-sfärer som tillsatser för standardbränslet UO2. Flera utvecklingssteg tillämpades för att förstå inverkan av sintringsparametrarna på mikrostrukturen för UN-UO2 bränslet, utvärdera potentiella beläggningskandidater för att kapsla in UN sfärerna med hjälp av olika beläggningsmetoder, bedöma kompositernas oxidationsbeständighet och uppskatta det termiska beteendet hos obelagda och inkapslade UN-UO2 bränslen. Alla kompositer sintrades med starkströmsassisterad varmpressning (SPS) och karakteriserades av flera komplementära tekniker. Molybden och volfram visar sig vara bra materialkandidater för den skyddande beläggningen med hjälp av en kombination av modellering och experiment. Det visas att pulverlackeringsmetoderna bildar ett tjockt, tätt men ojämnt skikt på sfärerna, medan kemiska- och fysikaliska- ångavsättningsmetoder ger tunnare och mer enhetliga skikt. Finita elementmodellering indikerar att bränslets centertemperatur kan minskas med mer än 400 K när 70 wt% av inkapslade UN-sfärer används jämfört med referensen UO2. Dessutom reduceras degraderingen av nitridfasen när den är inbäddad i en UO2-matris och den kan också reduceras ännu mer genom närvaron av ett beläggningsskikt. Dessa resultat bidrar till ytterligare utveckling av metoder för att tillverka, karakterisera, och utvärdera olyckstoleranta bränslen för LWR.

Abstract [pt]

Combustíveis tolerantes a acidentes (ATFs) são projetados para suportar um acidente severo no núcleo do reator por mais tempo que os sistemas combustíveis padrão composto por UO2 e liga de Zr, atualmente usados emreatores de água leve (LWRs). Combustíveis compósitos do tipo UN-UO2 estão sendo considerados como um conceito ATF para solucionar a inferior resistência à oxidação do combustível UN, tendo em vista perspectivas desegurança para uso em LWRs, enquanto melhora o comportamento do combustível de UO2 no reator. O objetivo principal desta tese é fabricar, caracterizar, e avaliar um conceito inovador de ATF para LWRs: esferas de UN encapsuladas como aditivos para o combustível padrão de UO2. Várias etapas de desenvolvimento foram aplicadas para: entender a influência dos parâmetros de sinterização na microestrutura do combustível UN-UO2, avaliar potenciais candidatos para encapsular as esferas de UN utilizando diferentes metodologias de revestimento, acessar a resistência à oxidação dos compósitos, e estimar o comportamento térmico dos combustíveis compósitos UN-UO2 sem e com revestimentos. Todos os compósitos foram sinterizados pelo método de sinterização por descarga elétrica (SPS) e caracterizados utilizando diversas técnicas de caracterização microestrutural complementares. Molibdênio e tungstênio demonstraram ser bons materiais candidatos para o revestimento protetivo pela combinação de resultados de modelagem e experimentos. É demonstrado que o método de revestimento utilizando pó forma uma camada espessa, densa e não uniforme nas esferas, enquanto os métodos de deposição química e a vapor proporcionam camadas mais finas e uniformes. Modelagem por elementos finitos indica que a temperatura central do combustível pode ser reduzida em mais de 400 K quando 70 %m de esferas encapsuladas são utilizados, em comparação ao combustível referência UO2. Além disso, a severidade da degradação da fase nitreto é reduzida quando integrada na matriz de UO2, podendo ser reduzida ainda mais pela presença de uma camada de revestimento. Esses resultados contribuem para futuros desenvolvimentos em metodologias de fabricação, caracterização e avaliação de combustíveis tolerantes a acidentes em LWRs.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023. p. 101
Series
TRITA-SCI-FOU ; 2023:17
Keywords
Accident tolerant fuel, UN-UO2 composite fuel, coating technology, powder coating, chemical vapour deposition (CVD), physical vapour deposition (PVD), UN spheres, spark plasma sintering
National Category
Physical Sciences
Research subject
Physics, Nuclear Engineering
Identifiers
urn:nbn:se:kth:diva-326844 (URN)978-91-8040-561-4 (ISBN)
Public defence
2023-06-02, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, ID17–0078
Note

QC 2023-05-17

Available from: 2023-05-17 Created: 2023-05-12 Last updated: 2023-05-26Bibliographically approved

Open Access in DiVA

Costa et al. TopFuel 2021(853 kB)100 downloads
File information
File name FULLTEXT01.pdfFile size 853 kBChecksum SHA-512
4399d4345c3c53cc5c4dd41f29399f6c7e273b27fc24340850d3a30aab195369b614fd5e58bbdbba6dc8a33be8512d3329a6fa44269507d68d5a3d45bc4a2403
Type fulltextMimetype application/pdf

Other links

https://www.researchgate.net/profile/Diogo-Costa-3/publication/356494087_Coated_UN_microspheres_embedded_in_UO2_matrix_as_an_innovative_advanced_technology_fuel_early_progress/links/619e1926f1d624457166f7b6/Coated-UN-microspheres-embedded-in-UO2-matrix-as-an-innovative-advanced-technology-fuel-early-progress.pdf

Authority records

Costa, Diogo RibeiroLiu, HuanWallenius, JanneLopes, Denise AdornoOlsson, Pär

Search in DiVA

By author/editor
Costa, Diogo RibeiroLiu, HuanWallenius, JanneLopes, Denise AdornoOlsson, Pär
By organisation
Nuclear Engineering
Composite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 105 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 350 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf