kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Finite element modeling of UN-UO2 and UN-X-UO2 (X=Mo, W) composite nuclear fuels: temperature-dependent thermal conductivity and fuel performance
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Engineering.
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Engineering. Westinghouse Electric Sweden AB.ORCID iD: 0000-0003-1628-3001
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Engineering. KTH, School of Engineering Sciences (SCI), Physics, Nuclear Physics.
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Engineering.ORCID iD: 0000-0002-2381-3309
2023 (English)In: Nuclear Materials and Energy, E-ISSN 2352-1791, article id JNME-D-22-00099R1Article in journal (Refereed) Submitted
Abstract [en]

In this study, the temperature-dependent effective thermal conductivity of the innovative UN-X-UO2 (X=Mo, W) nuclear fuel composite has been estimated in the temperature range from room temperature to 2000 K. This composite fuel concept is considered as a promising accident tolerant fuel for light water reactors (LWRs). Following the previously reported experimental composite design, the composite fuel thermal conductivity was calculated using Finite Element modeling (FEM), and it is compared with analytical models of thermal conductivity for 10, 30, 50, and 70 wt.% uncoated/coated UN microspheres in a UO2 matrix. The FEM results show an expected increase in the fuel thermal conductivity as the wt.% of the coated/uncoated UN microspheres increases – from 1.5 to 5.7 times the UO2 reference at 2000 K. However, the analytical models show an overestimation of the fuel thermal conductivity as the wt.% increases. The results also show that Mo and W coatings have similar thermal behaviors and the coating thickness varying from 1-5 μm has an insignificant effect on the thermal behavior of the composite. However, at higher weight fractions, the thermal conductivity of the fuel composite at room temperature is substantially influenced by the high thermal conductivity coatings exceeding that of UN. Thereafter, the thermal conductivity profiles from FEM were used in the fuel thermal performance evaluation during LWR normal operation to calculate the maximum centerline temperature of the fuel composites. The results show a significant decrease in the fuel maximum centerline temperature ranging from −72 K for 10 wt.% UN to −438 K for 70 wt.% UN compared to the UO2 under the same irradiation conditions, providing an enhanced safety margin and thermal and neutronic advantages.

Place, publisher, year, edition, pages
2023. article id JNME-D-22-00099R1
Keywords [en]
Accident tolerant fuel, UN-X-UO2, Composite nuclear fuel, Thermal conductivity, Finite element modeling, Fuel performance
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-326601OAI: oai:DiVA.org:kth-326601DiVA, id: diva2:1755133
Funder
Swedish Foundation for Strategic Research, ID17-0078Swedish Research Council, 2019-04156
Note

QC 20230509

Available from: 2023-05-05 Created: 2023-05-05 Last updated: 2023-05-12Bibliographically approved
In thesis
1. Development of Encapsulated UN-UO₂ Accident Tolerant Fuel
Open this publication in new window or tab >>Development of Encapsulated UN-UO₂ Accident Tolerant Fuel
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Accident tolerant fuels (ATFs) are designed to endure a severe accident in the reactor core longer than the standard UO2-Zr alloy systems used in light water reactors (LWRs). Composite fuels such as UN-UO2 are being considered as an ATF concept to address the lower oxidation resistance of the UN fuel from a safety perspective for use in LWRs, whilst improving the in-reactor behaviour of the UO2 fuel. The main objective of this thesis is to fabricate, characterise, and evaluate an innovative ATF concept for LWRs: encapsulated UN spheres as additives for the standard UO2 fuel. Several development steps were applied to understand the influence of the sintering parameters on the UN-UO2 fuel microstructure, evaluate potential coating candidates to encapsulate the UN spheres by different coating methodologies, assess the oxidation resistance of the composites, and estimate the thermal behaviours of uncoated and encapsulated UN-UO2 fuels. All composites were sintered by the spark plasma sintering method and characterised by many complementary microstructural techniques. Molybdenum and tungsten are shown, using a combination of modelling and experiments, to be good material candidates for the protective coating. It is shown that the powder coating methods form a thick, dense, and non-uniform coating layer onto spheres, while the chemical and vapour deposition methods provide thinner and more uniform layers. Finite element modelling indicates that the fuel centreline temperature may be reduced by more than 400 K when 70 wt% of encapsulated spheres are used as compared to the reference UO2. Moreover, the severity of the degradation of the nitride phase is reduced when embedded in a UO2 matrix and may also be reduced even more by the presence of a coating layer. These results contribute to further developments in methodologies for fabricating, characterising, and evaluating accident tolerant fuels within LWRs.

Abstract [sv]

Olyckstoleranta bränslen (ATF) är utformade för att motstå en allvarlig olycka i reaktorhärden längre än de standard UO2-Zr system som används i lättvattenreaktorer (LWR) idag. Kompositbränslen som UN-UO2 anses vara ett ATF koncept som kan förbättra den lägre oxidationsbeständigheten hos UN bränslet ur ett säkerhetsperspektiv för användning i LWR, samtidigt som UO2-bränslets beteende och prestanda i reaktorn förbättras. Huvudsyftet med denna avhandling är att tillverka, karakterisera och utvärdera ett innovativt ATF-koncept för LWR: inkapslade UN-sfärer som tillsatser för standardbränslet UO2. Flera utvecklingssteg tillämpades för att förstå inverkan av sintringsparametrarna på mikrostrukturen för UN-UO2 bränslet, utvärdera potentiella beläggningskandidater för att kapsla in UN sfärerna med hjälp av olika beläggningsmetoder, bedöma kompositernas oxidationsbeständighet och uppskatta det termiska beteendet hos obelagda och inkapslade UN-UO2 bränslen. Alla kompositer sintrades med starkströmsassisterad varmpressning (SPS) och karakteriserades av flera komplementära tekniker. Molybden och volfram visar sig vara bra materialkandidater för den skyddande beläggningen med hjälp av en kombination av modellering och experiment. Det visas att pulverlackeringsmetoderna bildar ett tjockt, tätt men ojämnt skikt på sfärerna, medan kemiska- och fysikaliska- ångavsättningsmetoder ger tunnare och mer enhetliga skikt. Finita elementmodellering indikerar att bränslets centertemperatur kan minskas med mer än 400 K när 70 wt% av inkapslade UN-sfärer används jämfört med referensen UO2. Dessutom reduceras degraderingen av nitridfasen när den är inbäddad i en UO2-matris och den kan också reduceras ännu mer genom närvaron av ett beläggningsskikt. Dessa resultat bidrar till ytterligare utveckling av metoder för att tillverka, karakterisera, och utvärdera olyckstoleranta bränslen för LWR.

Abstract [pt]

Combustíveis tolerantes a acidentes (ATFs) são projetados para suportar um acidente severo no núcleo do reator por mais tempo que os sistemas combustíveis padrão composto por UO2 e liga de Zr, atualmente usados emreatores de água leve (LWRs). Combustíveis compósitos do tipo UN-UO2 estão sendo considerados como um conceito ATF para solucionar a inferior resistência à oxidação do combustível UN, tendo em vista perspectivas desegurança para uso em LWRs, enquanto melhora o comportamento do combustível de UO2 no reator. O objetivo principal desta tese é fabricar, caracterizar, e avaliar um conceito inovador de ATF para LWRs: esferas de UN encapsuladas como aditivos para o combustível padrão de UO2. Várias etapas de desenvolvimento foram aplicadas para: entender a influência dos parâmetros de sinterização na microestrutura do combustível UN-UO2, avaliar potenciais candidatos para encapsular as esferas de UN utilizando diferentes metodologias de revestimento, acessar a resistência à oxidação dos compósitos, e estimar o comportamento térmico dos combustíveis compósitos UN-UO2 sem e com revestimentos. Todos os compósitos foram sinterizados pelo método de sinterização por descarga elétrica (SPS) e caracterizados utilizando diversas técnicas de caracterização microestrutural complementares. Molibdênio e tungstênio demonstraram ser bons materiais candidatos para o revestimento protetivo pela combinação de resultados de modelagem e experimentos. É demonstrado que o método de revestimento utilizando pó forma uma camada espessa, densa e não uniforme nas esferas, enquanto os métodos de deposição química e a vapor proporcionam camadas mais finas e uniformes. Modelagem por elementos finitos indica que a temperatura central do combustível pode ser reduzida em mais de 400 K quando 70 %m de esferas encapsuladas são utilizados, em comparação ao combustível referência UO2. Além disso, a severidade da degradação da fase nitreto é reduzida quando integrada na matriz de UO2, podendo ser reduzida ainda mais pela presença de uma camada de revestimento. Esses resultados contribuem para futuros desenvolvimentos em metodologias de fabricação, caracterização e avaliação de combustíveis tolerantes a acidentes em LWRs.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023. p. 101
Series
TRITA-SCI-FOU ; 2023:17
Keywords
Accident tolerant fuel, UN-UO2 composite fuel, coating technology, powder coating, chemical vapour deposition (CVD), physical vapour deposition (PVD), UN spheres, spark plasma sintering
National Category
Physical Sciences
Research subject
Physics, Nuclear Engineering
Identifiers
urn:nbn:se:kth:diva-326844 (URN)978-91-8040-561-4 (ISBN)
Public defence
2023-06-02, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, ID17–0078
Note

QC 2023-05-17

Available from: 2023-05-17 Created: 2023-05-12 Last updated: 2023-05-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Sweidan, FarisCosta, Diogo RibeiroLiu, HuanOlsson, Pär

Search in DiVA

By author/editor
Sweidan, FarisCosta, Diogo RibeiroLiu, HuanOlsson, Pär
By organisation
Nuclear EngineeringNuclear Physics
In the same journal
Nuclear Materials and Energy
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 333 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf