kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of Surface Charge on the Fabrication of Hierarchical Mn-Based Prussian Blue Analogue for Capacitive Desalination
KTH, School of Engineering Sciences (SCI), Applied Physics.
KTH, School of Engineering Sciences (SCI), Applied Physics.ORCID iD: 0000-0002-5625-630X
KTH, School of Engineering Sciences (SCI), Applied Physics.ORCID iD: 0000-0002-5891-0053
KTH, School of Engineering Sciences (SCI), Applied Physics.ORCID iD: 0000-0002-0074-3504
2022 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 14, no 35, p. 40371-40381Article in journal (Refereed) Published
Abstract [en]

Multiple and hierarchical manganese (Mn)-based Prussian blue analogues obtained on different substrates are successfully prepared using a universal, facile, and simple strategy. Different functional groups and surface charge distributions on carbon cloth have significant effects on the morphologies and nanostructures of Mn-based Prussian blue analogues, thereby indirectly affecting their physicochemical properties. Combined with the advantages of the modified carbon cloth and the nanostructured Mn-based Prussian blue analogues, the composite with negative surface charge formed by the electronegativity differences shows good electrochemical properties, leading to improvement in charge efficiency during capacitive desalination. An asymmetric device fabricated with Mn-based Prussian blue analogue-modified F-doped carbon cloth as the cathode and acid-treated carbon cloth as the anode presents the highest salt adsorption capacity of 10.92 mg g-1 with a charge efficiency of 82.28% and the lowest energy consumption of 0.45 kW h m-3 at 1 V due to the main influencing factor from the negative surface charge leading to co-ion expulsion boosting the capacitive deionization performance. We provide insights for further exploration of the relationship between second-phase materials and carbon cloth, while offering some guidance for the design and preparation of electrodes for desalination and beyond. 

Place, publisher, year, edition, pages
American Chemical Society (ACS) , 2022. Vol. 14, no 35, p. 40371-40381
Keywords [en]
capacitive deionization, carbon cloth electrode, desalination, electronegativity, Mn-based Prussian blue analogue, surface charge, Carbon, Chemical bonds, Electrodes, Energy utilization, Fabrication, Physicochemical properties, Carbon cloths, Carbon-cloth electrodes, Charge efficiency, Different substrates, Manganese-based prussian blue analog, Negative surface charges, Prussian blue analogues, Simple++, Surface charge distribution
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-327044DOI: 10.1021/acsami.2c08192ISI: 000848744800001PubMedID: 36006982Scopus ID: 2-s2.0-85137632234OAI: oai:DiVA.org:kth-327044DiVA, id: diva2:1758495
Note

QC 20230523

Available from: 2023-05-23 Created: 2023-05-23 Last updated: 2025-02-14Bibliographically approved
In thesis
1. Chitosan-based sustainable coatings for multifunctional applications
Open this publication in new window or tab >>Chitosan-based sustainable coatings for multifunctional applications
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Marine resources play a crucial role in supporting the blue economy and addressing global challenges to achieve some of the UN’s Sustainable Development Goals (SDGs). However, the marine ecosystem is adversely affected by plastic pollution, biofouling, and corrosion; thus, there is an urgent need for sustainable solutions. Chitosan, derived from chitin, the second most abundant biopolymer on Earth after cellulose, offers promising potential due to its unique biodegradable, water-soluble, antimicrobial, and film-forming properties. This thesis summarizes the sustainable extraction of chitosan, chemical modification of chitosan derivatives, and the application of chitosan coatings for antimicrobial, UV-filtering, corrosion prevention, and marine antifouling. In the first part of the thesis, extraction of chitosan from food waste was carried out using green solvents as a sustainable solution for circular economy. Further, the antimicrobial activity of chitosan was enhanced by developing nanocomposites with core-shell ZnO@SnOx particles, which demonstrated a significant potential in food packaging application. To achieve even greater antimicrobial efficacy and UV-blocking capabilities, chitosan was chemically grafted with benzophenone-3 (BP-3), a plant extract known for its UV filtering properties. The antimicrobial activity of the obtained chitosan-BP-3 coatings was evaluated against both Gram-negative and Gram-positive bacteria, and the hydroxyl group on benzophenone-3 is found playing a crucial role in the antimicrobial effectiveness. Continuous irradiation tests showed that the coating possesses long-term UV-blocking effect. Biofouling is a process about the settlement of micro- and macro-organisms on any substance immersed in water, leading to significant economic losses due to increased drag, material degradation, and maintenance costs in marine and industrial applications. To address this challenge, polyethylene glycol (PEG)-grafted chitosan coatings with varied chain length of PEG were synthesized, aiming to reduce microbial and diatom adhesion. This was achieved by modulating the brush effect and hydrophilicity of the surface coatings. Moreover, ZnO-Ag nanoparticles embedded in the coating has shown playing a bactericidal role under light or in the dark. On the other hand, it is urgent to find alternatives to the prevalent but environmentally unfriendly epoxy resin in anticorrosive coatings and prevent the embedded anti-corrosion agents from discharging into water. Multifunctional chitosan coatings have emerged as a promising solution for marine corrosion prevention and antifouling applications. For the first time, corrosion inhibitor, 2-mercaptobenzotriazole (MBT), was chemically linked to chitosan. In addition, new anti-corrosion mechanism was proposed based on the chitosan-MBT coatings. The corrosion resistance of the chitosan-MBT coating was improved by 40 times compared with the chitosan and MBT mixture coating. This bifunctional chitosan-MBT coating had also exhibited superior antifouling effect against settlement of mussels for 48 h. The work presented in this thesis highlights the versatility and potential of chitosan as an emerging biomaterial for sustainable development in the fields of antimicrobial, food packaging, marine antifouling, and corrosion prevention.

Abstract [sv]

Marina resurser spelar en avgörande roll för att stödja den blå ekonomin och bidra till att uppnå flera av FN:s globala mål för hållbar utveckling (SDG). Samtidigt hotas marina ekosystemet av plastföroreningar, biofouling och korrosion. Detta skapar ett akut behov av hållbara lösningar. Kitosan, som utvinns från kitin – den näst vanligaste biopolymeren på jorden efter cellulosa – har stor potential. Detta beror på dess unika egenskaper, såsom biologisk nedbrytbarhet, vattenlöslighet, antimikrobiell aktivitet och förmåga att bilda skyddande filmer. Denna avhandling undersöker hållbar utvinning av kitosan, dess kemiska modifiering och dess tillämpningar inom antimikrobiella beläggningar, UV-filter, applikationer.

I avhandlingens första del utvanns kitosan från matavfall med hjälp av gröna lösningsmedel som en hållbar strategi för en cirkulär ekonomi. Vidare förbättrades kitosans antimikrobiella aktivitet genom att utveckla nanokompositer med kärn-skalsstruktur av ZnO@SnOx-partiklar, som visade betydande potential inom livsmedelsförpackningar. För att ytterligare förbättra den antimikrobiella effektiviteten och UV-blockerande egenskaper modifierades kitosan kemiskt med bensofenon-3 (BP-3), ett växtextrakt känt för sina UV-filteregenskaper. Den antimikrobiella aktiviteten hos de framställda kitosan-BP-3-beläggningarna testades mot både gramnegativa och grampositiva bakterier. Resultatet visade att hydroxylgruppen på bensofenon-3 spelade en avgörande roll för beläggningarnas antimikrobiella effekten. Kontinuerliga bestrålningstester visade dessutom att beläggningen bibehöll långvariga UV-blockerande egenskaper.

Biofouling är en process där mikro- och makroorganismer fäster sig  på material nedsänkta i vatten. Detta orsakar betydande ekonomiska förluster på grund av ökad friktion, materialnedbrytning och höga underhållskostnader inom marina och industriella tillämpningar. För att hantera detta problem syntetiserades kitosanbaserade beläggningar med polyetylenglykol (PEG) av varierande kedjelängd. Syftet var att minska vidhäftning av mikroorganismer och kiselalger. Detta uppnåddes genom att modulera borsteffekten och hydrofiliciteten hos ytan. Dessutom visade sig ZnO-Ag-nanopartiklar, inbäddade i beläggningen, ha bakteriedödande egenskaper både i ljus och mörker.

Det är samtidigt brådskande att hitta alternativ till de utbredda men miljöovänliga epoxihartser som används i korrosionsskyddande beläggningar. Det är också viktigt att förhindra att de inbäddade korrosionsskyddsmedlen släpps ut i vattnet. Multifunktionella kitosanbeläggningar har framträtt som en lovande lösning för att förebygga marin korrosion och biofouling. För första gången har korrosionsinhibitorn 2-merkaptobenzotriazol (MBT) kemiskt bundits till kitosan. En ny mekanism för korrosionsskydd föreslogs också baserad på kitosan-MBT-beläggningar. Jämfört med en blandning av kitosan och MBT visade sig kitosan-MBT-beläggningen 40 gånger bättre korrosionsresistens.Denna tvåfunktionella kitosan-MBT-beläggning uppvisade dessutom överlägsna antifouling-egenskaper genom att förhindra musslors vidhäftning under 48 timmar.

Arbetet som presenteras i denna avhandling belyser mångsidigheten och potentialen hos kitosan som ett framväxande biomaterial. Dess tillämpningar omfattar områden som antimikrobiella tillämpningar, livsmedelsförpackningar, marin antifouling och korrosionsskydd. 

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2025. p. 64
Series
TRITA-SCI-FOU ; 2025:06
National Category
Textile, Rubber and Polymeric Materials
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-360015 (URN)978-91-8106-193-2 (ISBN)
Public defence
2025-03-07, FB52, Albanova, Roslagstullsbacken 21, 114 21 Stockholm, Sweden, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 2025-02-17

Available from: 2025-02-17 Created: 2025-02-14 Last updated: 2025-04-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Zhang, XingyanToledo-Carrillo, Esteban AlejandroYu, DongkunDutta, Joydeep

Search in DiVA

By author/editor
Zhang, XingyanToledo-Carrillo, Esteban AlejandroYu, DongkunDutta, Joydeep
By organisation
Applied Physics
In the same journal
ACS Applied Materials and Interfaces
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 63 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf