kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rapid wetting of shear-thinning fluids
KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-6189-7953
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0003-4317-1726
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics. Södertörn Univ, SE-14189 Stockholm, Sweden..ORCID iD: 0000-0003-3336-1462
Show others and affiliations
2023 (English)In: Physical Review Fluids, E-ISSN 2469-990X, Vol. 8, no 4, article id 043302Article in journal (Refereed) Published
Abstract [en]

Using experiments and numerical simulations, we investigate the spontaneous spread-ing of droplets of aqueous glycerol (Newtonian) and aqueous polymer (shear-thinning) solutions on smooth surfaces. We find that in the first millisecond the spreading of the shear-thinning solutions is identical to the spreading of water, regardless of the polymer concentration. In contrast, aqueous glycerol solutions show a different behavior, namely, a significantly slower spreading rate than water. In the initial rapid spreading phase, the dominating forces that can resist the wetting are inertial forces and contact-line friction. For the glycerol solutions, an increase in glycerol concentration effectively increases the contact-line friction, resulting in increased resistance to wetting. For the polymeric solutions, however, an increase in polymer concentration does not modify contact-line friction. As a consequence, the energy dissipation at the contact line cannot be controlled by varying the amount of additives for shear-thinning fluids. The reduction of the spreading rate of shear-thinning fluids on smooth surfaces in the rapid-wetting regime can only be achieved by increasing solvent viscosity. Our results have implications for phase-change applications where the control of the rapid spreading rate is central, such as anti-icing and soldering.

Place, publisher, year, edition, pages
American Physical Society (APS) , 2023. Vol. 8, no 4, article id 043302
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-327173DOI: 10.1103/PhysRevFluids.8.043302ISI: 000976356900001Scopus ID: 2-s2.0-85153845237OAI: oai:DiVA.org:kth-327173DiVA, id: diva2:1758664
Note

QC 20230523

Available from: 2023-05-23 Created: 2023-05-23 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Numerical simulation of non-Newtonian fluids flow over surfaces
Open this publication in new window or tab >>Numerical simulation of non-Newtonian fluids flow over surfaces
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Wetting of surfaces by droplets of non-Newtonian fluids is important for various industrial and natural processes such as coating and cleaning of surfaces and inkjet printing, to name a few. Viscoelastic fluids are compounds of a very small amount of polymers and solvent. They are categorized as non-Newtonian fluids, and they exhibit both elasticity and shear dependent viscosity. Despite their relevance and abundance in our environment, dynamic wetting of viscoelastic fluids has been studied much less than that of the Newtonian fluids. Furthermore, many of the viscoelastic studies make simplifying assumptions of the contact line movement, for example, a constant value of the contact angle independent of the spreading speed of the droplet.

In this thesis work, we implement a numerical framework for dynamic contact line problems of viscoelastic fluids, taking into account contact line friction or contact line hysteresis when necessary. We solve the coupled Cahn-Hilliard, Navier-Stokes and viscoelastic constitutive models to reveal detailed information about the flow physics, such as the polymeric stress distributions inside the drops. Especially interesting is the vicinity of discontinuity regions e.g. the contact-line and liquid bridge between the coalescing drops. First, we present the idea of dual-resolution grids to address the high interfacial resolution requirements for a viscoelastic two-phase flow. In particular, a dual-resolution algorithm is presented and validated for the wetting of viscoelastic fluids. Secondly, we apply our algorithm to investigate the effect of non-Newtonian properties on jumping of two merging droplets from a superhydrophobic surface, a problem which might be of interest for self-cleaning surfaces. In the last part, the physical effects of non-Newtonian properties are investigated on both the initial wetting regime on a smooth hydrophilic surface and the pinning and depinning of a droplet in the presence of the contact angle hysteresis.

Abstract [sv]

Vätning av icke-newtonska vätskor på en yta är ett viktigt och vanligt förekommande problem i naturliga och industriella processer såsom ytrengöring, olika ytbeläggningar, bläckstråleskrivare för att nämna några exempel. Viskoelastiska vätskor består av polymerer och lösningsmedel och hör till kategorin icke-Newtonska vätskor, och de uppvisar båda elasticitet och skjuvningsberoende viskositet. Trots icke-Newtonska vätskors relevans i vardagen har deras vätningsegenskaper studerats mycket mindre hittils än processen för Newtonska vätskor. Vidare så används ofta förenklade antaganden av kontaktlinjens rörelse, såsom ett konstant värde av kontaktvinkeln som inte beror på spridningshastigheten.

I detta arbete implementerar vi en numerisk lösningsmetod för dynamiska vätningsproblem av viskoelastiska droppar. Vi löser de kopplade Cahn-Hilliard, Navier-Stokes och viskoelastiska konstitutiva ekvationerna tillsammans för att få fram detaljerad information av strömningen såsom fördelningen av viskoelastiska spänningar inuti droppen. Speciellt intressant är att fokusera på områden där egenskaperna varierar diskontinuerligt, till exempel kontaktlinjer och i vätskebryggan mellan koalescerande droppar. Först presenterar vi tanken bakom duala nät för att öka upplösningen nära ytan i viskoelastiska tvåfasflöden. I synnerhet presenterar vi ekvationerna och valideringen av den numeriska lösaren för vätning av viskoelastiska vätskor. I den andra delen undersöker vi effekten av de icke-newtonska egenskaperna påverkar två koalescerande droppar som hoppar från en superhydrofob yta, ett problem av potentiellt intresse för självrengörande ytor. I den sista delen undersöks de viskoelastiska effekternas betydelse för snabba vätningsprocesser på en slät hydrofil yta samt för rörelsen av droppar med kontaktlinjehysteres.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 67
Series
TRITA-SCI-FOU ; 2023:43
Keywords
dynamic wetting, viscoelasticity, non-Newtonian fluids, contact- angle hysteresis, droplet spreading, self-propelled jumping, dynamisk vätning, viskoelasticitet, icke-Newtonska vätskor, kontaktlinjehysteres, dropparnas spridning på ytor, spontan hoppning av droppar från ytor
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-334511 (URN)978-91-8040-682-6 (ISBN)
Public defence
2023-09-15, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 230824

Available from: 2023-08-24 Created: 2023-08-21 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Yada, SusumuBazesefidpar, KazemTammisola, OutiAmberg, GustavBagheri, Shervin

Search in DiVA

By author/editor
Yada, SusumuBazesefidpar, KazemTammisola, OutiAmberg, GustavBagheri, Shervin
By organisation
Engineering MechanicsLinné Flow Center, FLOWFluid Mechanics and Engineering Acoustics
In the same journal
Physical Review Fluids
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 194 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf