kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung
Sci Life Lab, Solna, Sweden; Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, Stockholm, Sweden.ORCID iD: 0000-0002-8837-4642
Sci Life Lab, Solna, Sweden; Stockholm Univ, Dept Biochem & Biophys, Stockholm, Sweden.
Karolinska Inst, Dept Med Biochem & Biophys, Div Mol Neurobiol, Stockholm, Sweden.
Uppsala Univ, Dept Informat Technol, Uppsala, Sweden; Sci Life Lab, BioImage Informat Facil, Solna, Sweden.ORCID iD: 0000-0002-1835-921X
Show others and affiliations
2023 (English)In: Nature Cell Biology, ISSN 1465-7392, E-ISSN 1476-4679, Vol. 25, p. 351-365Article in journal (Refereed) Published
Abstract [en]

Sountoulidis et al. provide a spatial gene expression atlas of human embryonic lung during the first trimester of gestation and identify 83 cell identities corresponding to stable cell types or transitional states. The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.

Place, publisher, year, edition, pages
Springer Nature , 2023. Vol. 25, p. 351-365
National Category
Cell and Molecular Biology
Identifiers
URN: urn:nbn:se:kth:diva-328095DOI: 10.1038/s41556-022-01064-xISI: 000916842700001PubMedID: 36646791Scopus ID: 2-s2.0-85146289982OAI: oai:DiVA.org:kth-328095DiVA, id: diva2:1761961
Note

QC 20231122

Available from: 2023-06-02 Created: 2023-06-02 Last updated: 2025-03-21Bibliographically approved
In thesis
1. Development and application of spatial transcriptomics methods
Open this publication in new window or tab >>Development and application of spatial transcriptomics methods
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Transcriptomics is one of the pivotal fields in molecular biology, enabling comprehensive analysis of gene expression patterns. Recent advancements in the biotechnology field have transformed the transcriptomics research, providing insights into the complexity of cellular processes in a greater detail. However, conventional transcriptomics methods such as bulk RNA sequencing or single-cell RNA sequencing rely on tissue dissociation and therefore lack spatial information, which limits our understanding of gene expression patterns within the tissue structures. The development of spatially resolved transcriptomics methods has revolutionized the study of transcriptomes, enabling analysis of gene expression patterns in the spatial context. The wide range of available transcriptomics technologies offer various levels of resolution and throughput, and combination of multiple techniques can be beneficial for studying biological systems and gain deeper understanding of their molecular processes. In this thesis, particular emphasis is given to the Visium spatial gene expression technology, which has gain widespread popularity in the research community over the recent years. 

In the article I, we expand the application of the Visium platform to fresh-frozen samples of lower RNA quality or otherwise challenging characteristics. To achieve this, we introduce specific modifications to the commercially available protocol and test its effectiveness across different tissue types of varying RNA quality, including pediatric brain tumors, human small intestine, and mouse bone and cartilage. By conducting comparative analysis, we demonstrate that the new protocol outperforms the standard Visium protocol when working with samples of moderate and lower RNA quality.

Article II introduces a novel method that enhances the resolution of the Visium gene expression method through tissue expansion. We showcase the implementation of this new protocol on two regions of mouse brain, olfactory bulb and hippocampus. We demonstrate the ability of this approach to study smaller tissue structures that were previously beyond the resolution capabilities of the Visium platform.

In the article III and IV, we demonstrate the practical application of the Visium approach and its combination with other methodologies in the field of developmental biology. We show how utilizing spatial transcriptomics methods help elucidate the spatial organization of cell types and cell states during organogenesis in the developing human spinal cord (article III) and developing lung tissue (article IV). By deploying single-cell RNA sequencing and spatial methods, we described the spatiotemporal gene expression profiles of various cell types as well as shared and unique events occurring during the spinal cord development in humans and rodents (article III). Applying this multimodal approach to lung tissue (article IV) allowed us to characterize novel cell states emerging during lung development and provided valuable insights into the structural organization of developing lungs. These studies highlight the findings and observations that can be gained by combining spatially resolved transcriptomics with other laboratory techniques to shed light on the spatial dynamics of cellular processes during organ development.

Abstract [sv]

Transkriptomik är ett centralt område inom molekylärbiologi som möjliggör övergripande analys av genuttrycksmönster. De senaste framstegen inom bioteknik har revolutionerat transkriptomikforskningen vilket gett nya insikter i cellulära processers komplexitet på en mer detaljerad nivå. Konventionella transkriptomikmetoder som bulk-RNA-sekvensering eller single-cell RNA-sekvensering förlitar sig dock på dissociering av vävnad och saknar därför spatial information, vilket begränsar vår förståelse av genuttrycksmönster inom vävnaden. Utvecklingen av spatialt upplöst transkriptomik har revolutionerat studerandet av transkriptom genom att möjliggöra analys av genuttrycksmönster i sin spatiala kontext. Det breda utbudet av tillgängliga transkriptomiktekniker erbjuder olika nivåer av upplösning och kapacitet, och kombinationen av flera tekniker kan vara fördelaktig för studier av biologiska system för att uppnå en djupare förståelse av deras molekylära processer. I den här avhandlingen läggs särskild vikt på Visium-teknologin för spatialt genuttryck, som har blivit mycket populär inom forskarvärlden under de senaste åren.

I Artikel I expanderar vi tillämpningen av Visium-plattformen till färskfrusna prover med lägre RNA-kvalitet eller andra utmanande egenskaper. För att uppnå detta introducerar vi specifika modifieringar till den kommersiellt tillgängliga metoden och testar dess effektivitet på olika vävnadstyper med varierande RNA-kvalitet, inklusive barnhjärntumörer, mänsklig tunntarm och musbens- och broskvävnad. Våra jämförelse analyser visar att den nya metoden överträffar standard Visium-protokollet för prover med måttlig eller lägre RNA-kvalitet.

Artikel II introducerar en ny metod som förbättrar upplösningen av Visium-metoden genom utvidgning av vävnaden. Vi applicerar detta nya protokoll på två områden i mushjärnan, specifikt luktloben och hippocampus och demonstrerar dess förmågan att studera mindre vävnadsstrukturer som tidigare låg utanför Visium-plattformens upplösningsförmåga.

I Artikel III och IV demonstrerar vi den praktiska tillämpningen av Visium-metoden och dess kombination med andra metoder inom utvecklingsbiologi. Vi visar på hur användningen av spatiala transkriptomikmetoder hjälper till att belysa den rumsliga organisationen av celltyper och celltillstånd under organogenesen i den mänskliga ryggmärgs utvecklingen (artikel III) och i lungvävnads utvecklingen (artikel IV). Genom att använda single-cell RNA-sekvensering och spatiala metoder beskrev vi de spatiala genuttrycksmönstren hos olika celltyper samt delade och unika händelser som sker under ryggmärgsutvecklingen hos människor jämfört med gnagare (artikel III). Genom att tillämpa denna multimodala metod på lungvävnad (artikel IV) karaktäriserar vi även nya celltillstånd som uppstår under lungutvecklingen och erhåller värdefulla insikter i den strukturella organisationen av utvecklade lungor. Dessa studier framhäver de resultat och iakttagelser som kan erhållas genom att kombinera spatialt upplösta transkriptomik med andra laboratorietekniker för att klargöra den spatiala dynamiken hos cellulära processer under organs utveckling.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 39
Series
TRITA-CBH-FOU ; 2023:34
Keywords
RNA, Spatial Transcriptomics, RNA sequencing
National Category
Biological Sciences
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-334467 (URN)978-91-8040-648-2 (ISBN)
Public defence
2023-09-29, Air&Fire, Tomtebodavägen 23, 17165, via Zoom: https://kth-se.zoom.us/w/65460357449?tk=AcMUAEl9A6pH48yexKbBI7fYY6VCqV2mTsHWAXFg32Q.DQQAAAAPPb3JSRZNNHpIZ1VESFI0ZV9XNDQ0LWVCNVB3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA, Solna, 10:00 (English)
Opponent
Supervisors
Note

QC 2023-08-21

Available from: 2023-08-21 Created: 2023-08-21 Last updated: 2023-09-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Bergenstråhle, JosephVicari, MarcoCzarnewski, PauloAbalo, Xesús MAndrusivova, ZanetaMirzazadeh, RezaAsp, MichaelaSariyar, SanemMartinez Casals, AnaAyoglu, BurcuLundberg, EmmaLundeberg, Joakim

Search in DiVA

By author/editor
Sountoulidis, AlexandrosAvenel, ChristopheBergenstråhle, JosephVicari, MarcoCzarnewski, PauloAbalo, Xesús MAndrusivova, ZanetaMirzazadeh, RezaAsp, MichaelaLi, XiaofeiSariyar, SanemMartinez Casals, AnaAyoglu, BurcuLundberg, EmmaLundeberg, Joakim
By organisation
Gene TechnologyScience for Life Laboratory, SciLifeLabCellular and Clinical Proteomics
In the same journal
Nature Cell Biology
Cell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 285 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf