kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
2-Methoxy-4-Vinylphenol as a Biobased Monomer Precursor for Thermoplastics and Thermoset Polymers
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-8317-3529
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.ORCID iD: 0000-0002-5081-1835
Show others and affiliations
2023 (English)In: Polymers, E-ISSN 2073-4360, Vol. 15, no 9, article id 2168Article in journal (Refereed) Published
Abstract [en]

To address the increasing demand for biobased materials, lignin-derived ferulic acid (FA) is a promising candidate. In this study, an FA-derived styrene-like monomer, referred to as 2-methoxy-4-vinylphenol (MVP), was used as the platform to prepare functional monomers for radical polymerizations. Hydrophobic biobased monomers derived from MVP were polymerized via solution and emulsion polymerization resulting in homo- and copolymers with a wide range of thermal properties, thus showcasing their potential in thermoplastic applications. Moreover, divinylbenzene (DVB)-like monomers were prepared from MVP by varying the aliphatic chain length between the MVP units. These biobased monomers were thermally crosslinked with thiol-bearing reagents to produce thermosets with different crosslinking densities in order to demonstrate their thermosetting applications. The results of this study expand the scope of MVP-derived monomers that can be used in free-radical polymerizations toward the preparation of new biobased and functional materials from lignin.

Place, publisher, year, edition, pages
MDPI AG , 2023. Vol. 15, no 9, article id 2168
Keywords [en]
lignin, biomass, emulsion, crosslinking, curing, thiol-ene
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-328318DOI: 10.3390/polym15092168ISI: 000987483600001PubMedID: 37177314Scopus ID: 2-s2.0-85159337521OAI: oai:DiVA.org:kth-328318DiVA, id: diva2:1763376
Note

QC 20230607

Available from: 2023-06-07 Created: 2023-06-07 Last updated: 2024-01-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Alexakis, Alexandros EfraimAyyachi, ThayanithiMousa, MaryamOlsen, PeterMalmström, Eva

Search in DiVA

By author/editor
Alexakis, Alexandros EfraimAyyachi, ThayanithiMousa, MaryamOlsen, PeterMalmström, Eva
By organisation
Coating TechnologyWallenberg Wood Science CenterBiocomposites
In the same journal
Polymers
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 277 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf