kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling the formation of detrimental phases in cemented carbides
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering. Univ Lille, Cent Lille, CNRS, INRAe,UMET,Unite Mat & Transformat,UMR 8207, F-59000 Lille, France..ORCID iD: 0000-0002-7697-9150
QuesTek AB, Rasundavagen 18, S-16967 Solna, Sweden..
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0002-7656-9733
2023 (English)In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 228, p. 111823-, article id 111823Article in journal (Refereed) Published
Abstract [en]

Integrated Computational Materials Engineering (ICME) has proved to be an efficient tool for understand-ing the process-structure-property relationships and helping us to design materials. For instance, in cemented carbides manufacturing, one of the most critical parameters is the C-window. It is defined as the C content range for which phases detrimental to the mechanical properties are avoided. This pro-cessing window has been traditionally defined using applied thermodynamics methods. However, the deviation between equilibrium calculations and real manufacturing conditions requires big additional empirical efforts to precisely define the C-window. In this work, an ICME-based approach is proposed to redefine the processability limits of cemented carbides taking the cooling rate and the material's initial powder size into consideration. The method relies on the interactive coupling of several adapted models and tools, to not only set the processability boundaries, but also to study the complex mechanisms inter-play happening along microstructural evolution. A better understanding of these underlaying mecha-nisms leads to new inputs that can be used in the design of cemented carbides. In this regard, it is observed that faster cooling rates or coarser WC grades could be effectively used to prevent nucleation of the detrimental phases enlarging the C-window towards lower C contents. 

Place, publisher, year, edition, pages
Elsevier BV , 2023. Vol. 228, p. 111823-, article id 111823
Keywords [en]
ICME, Cemented carbides, Eta-carbides, Continuous cooling, Modeling
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-329447DOI: 10.1016/j.matdes.2023.111823ISI: 000998096300001Scopus ID: 2-s2.0-85150162239OAI: oai:DiVA.org:kth-329447DiVA, id: diva2:1772129
Note

QC 20230621

Available from: 2023-06-21 Created: 2023-06-21 Last updated: 2024-06-13Bibliographically approved
In thesis
1. ICME tools for the design of cemented carbides
Open this publication in new window or tab >>ICME tools for the design of cemented carbides
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cemented carbides have often been generalized as composite materials composed of hardtungsten carbide (WC) particles embedded in a softer and tougher Cobalt-based matrix. Thisgeneralization has become less accurate over time as alternative binder systems and additionalcarbides (for instance γ-carbides) have been introduced. Such changes have always been drivenby the need to excel in heavy-duty wear applications, as well as, more recently, by the effort tominimize cemented carbide’s social and ecological impact. The development of new grades thatfulfil both goals has been traditionally addressed following a trial-and-error methodology, in whichextensive experimental work must be performed to reach a satisfactory outcome. This leads to longand expensive concept-to-application processes. A more efficient alternative to design sustainablecemented carbides with the required performance is by using the Integrated ComputationalMaterials Engineering (ICME) approach. In this approach models and databases are developed todescribe the relationships between the process-structure-properties-performance (P-S-P-P) of thematerial. These models provide valuable information on the mechanisms ruling the behavior ofthe material at each step in the P-S-P-P chain, which can be used to design new materials moreefficiently.In this work two models are developed, and validated, contributing to an ICME-based frameworkfor the design of cemented carbides. The first model addresses the relationship between the materialstructure and its hardness (property) as a function of temperature. This Hot Hardness model usesstructural information on the mean and variation of the hard phase grain size, and the volume contentof binder to accurately predict the hardness of cemented carbides in a temperature range spanningfrom room temperature up to 1000°C. In addition, the model characterizes the differentmechanisms contributing to softening at elevated temperatures during service. Specifically, theintrinsic softening of the hard phases is in this work described using a Peierls-Nabarro-basedmodel. Further, a method to describe the microstructural rearrangement at high temperatures isproposed.The second model addresses the relationship between the material processing and its structure.The Dynamic C-window model describes the precipitation of detrimental phases in cementedcarbides to redefine the compositional processability limits of these materials, known as the Cwindow.Unlike traditional methods that rely solely on thermodynamic equilibrium calculations,this model also considers the cooling rate and the initial WC grain size, which are influentialprocessing design parameters affecting the width of the C-window. In addition to define a Cwindowthat take kinetics into account, the model also gives insights into the mechanisms rulingthe microstructural evolution during cooling, as well as predicting the particle size distribution ofthe detrimental phases as a function of the considered processing parameters. The modeling resultshave been experimentally validated through the processing and microstructural characterization ofsamples with controlled processing condition. This has allowed to conclude that the C-windowcan effectively be broadened by increasing the cooling rate during processing or/and by increasingthe WC grain size when the application allows it. The implications of this observation on thepotential processing of cemented carbides with alternative binder systems are also described.

Abstract [sv]

Hårdmetaller har ofta generaliserats till ett kompositmaterial av hårda wolframkarbidpartiklar(WC) inbäddade i en mjukare och segare koboltbaserad matris. Denna generalisering har, i taktmed att alternativa bindemedel och ytterligare karbider (γ-karbider) introducerats, blivit alltmermissvisande. Sådana förändringar har drivits av behovet av alltmer krävande industriellaslitageapplikationer, samt av att minimera hårdmetallers miljöpåverkan. Utvecklingen av nyasorter som uppfyller båda dessa mål har traditionellt skett genom en trial-and-error-metod, däromfattande experimentellt arbete måste utföras för att nå ett tillfredsställande resultat. Detta ledertill långa och dyra processer för att gå från koncept till applikation. En effektivare metod för attdesigna hållbara hårdmetaller som har erforderliga egenskaper är genom att använda så kallad”Integrated Computational Materials Engineering” (ICME). I denna metod utvecklas modeller ochdatabaser för att beskriva förhållandet mellan process-struktur-egenskaper-prestanda (P-S-P-P) imaterialet. Dessa modeller ger viktig information om de mekanismer som styr ett materialsbeteende vid varje steg i P-S-P-P-kedjan, vilket i sin tur kan användas för att designa nya materialmer effektivt.I denna avhandling utvecklas och valideras två modeller som bidrar till ett ICME-baseratramverk för design av hårdmetaller. Den första modellen beskriver förhållandet mellan materialetsstruktur och hårdhet (egenskaper) som funktion av dess temperatur. Denna varmhårdhets-modellanvänder strukturell information om hårdfasens kornstorlek och polydispersitet, samt volymsandelbindemedes för att prediktera hårdmetallens hårdhet från rumstemperatur upp till 1000°C.Dessutom beskriver modellen de olika mjukningsmekanismerna som bidrar till minskad hårdhetvid förhöjd temperatur vid användning. Det inre mjuknandet av hårdfaserna beskrivs i detta arbeteav en Peierls-Nabarro-baserad modell. Dessutom presenteras en metod som beskriver denmikrostrukturella omstruktureringen vid höga temperaturer.Den andra modellen som presenteras utforskar förhållandet mellan materialets framställningoch dess struktur. Den kallas för en Dynamic C-window-modell, och beskriver utskiljning avskadliga faser i hårdmetaller i syfte att modifiera begränsningar i sammansättning relaterat tillframställnings-processen, allmänt kallat C-fönster. Till skillnad från traditionella metoder, somenbart förlitar sig på termodynamiska jämviktsberäkningar, beaktar denna modell även viktigaprocessparametrar såsom kylhastigheten och den ursprungliga WC-kornstorleken vilket påverkarbredden på C-fönstret. Utöver att definiera ett C-fönster som tar hänsyn till kinetik ger modellenockså insikter i vilka mekanismer som styr mikrostrukturutvecklingen under kylning. Denmodellerar även partikelstorleksfördelningen av skadliga faser som funktion av deframställningsparametrar som tagits i beaktande. Från modelleringsresultaten och denexperimentella valideringen dras slutsatsen att C-fönstret effektivt kan breddas genom att användahögre kylhastigheter vid framställning av hårdmetaller eller/och genom att öka WC-kornstorlekennär applikationen så tillåter. Konsekvenser av detta för den potentiella framställningen avhårdmetaller med alternativa bindemedel beskrivs också.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 72
Series
TRITA-ITM-AVL ; 2024:11
Keywords
Cemented Carbide, ICME, Materials Design, η-carbides, κ-carbides, γ-carbides, Alternative Binder, Hot Hardness, Thermo-Calc
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-346479 (URN)978-91-8040-901-8 (ISBN)
Public defence
2024-06-14, Lindstedtsvägen 26 / https://kth-se.zoom.us/webinar/register/WN_XVtI6HLwQe-5-pBaJ4TrAg, Sal F2, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2024-05-17 Created: 2024-05-15 Last updated: 2024-06-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Lamelas, VictorBonvalet Rolland, ManonBorgenstam, Annika

Search in DiVA

By author/editor
Lamelas, VictorBonvalet Rolland, ManonBorgenstam, Annika
By organisation
Materials Science and Engineering
In the same journal
Materials & design
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 143 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf