kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of the velocity on quasi-static deflections of industrial articulated robots
KTH, School of Industrial Engineering and Management (ITM), Production engineering, Manufacturing and Metrology Systems.ORCID iD: 0000-0002-8222-503x
KTH, School of Industrial Engineering and Management (ITM), Production engineering, Manufacturing and Metrology Systems.ORCID iD: 0000-0002-2376-4922
Research and Development, MMAEN S.L., Pol. Plazaola, Manzana E, Nave 2, 31195, Berrioplano, Spain, Pol. Plazaola, Manzana E, Nave 2.
Faculty of Engineering, Mondragon University, Loramendi, 4, 20500, Gipuzkoa, Spain, Loramendi, 4.
Show others and affiliations
2023 (English)In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 125, no 3-4, p. 1429-1438Article in journal (Refereed) Published
Abstract [en]

This article presents the measurement and analysis of the influence of velocity on the quasi-static deflections of industrial manipulators of three different manufacturers. Quasi-static deflection refers to the deflection of the end effector position of articulated robots during movement at low velocity along a predefined trajectory. Based on earlier reported observations by the authors, there exists a difference in the static and quasi-static deflections considering the same points along a trajectory. This work investigates this difference to assess the applicability of robotic compliance calibration at low velocities. For this assessment, the deflections of three industrial articulated robots were measured at different speeds and loads. Considering the similarity among the robot models used in this investigation, this work also elaborates on the potential influence of the measurement procedure on the measured deflections and its implications for the compliance calibration of articulated robots. For all industrial articulated robots in this investigation, the quasi-static deflections are significantly larger than the static ones but similar in trend. Additionally, the magnitude of the quasi-static deflections presents a proportional relationship to the Cartesian velocity.

Place, publisher, year, edition, pages
Springer Nature , 2023. Vol. 125, no 3-4, p. 1429-1438
Keywords [en]
Compliance, Contact applications, Industrial robot, Position error, Quasi-statics
National Category
Production Engineering, Human Work Science and Ergonomics
Identifiers
URN: urn:nbn:se:kth:diva-330086DOI: 10.1007/s00170-022-10661-xISI: 000910817200001Scopus ID: 2-s2.0-85145752651OAI: oai:DiVA.org:kth-330086DiVA, id: diva2:1775158
Note

QC 20230626

Available from: 2023-06-26 Created: 2023-06-26 Last updated: 2025-03-10Bibliographically approved
In thesis
1. On the Accuracy of Articulated Robots: A Comprehensive Approach to Evaluate and Improve Robot Accuracy for Contact Applications
Open this publication in new window or tab >>On the Accuracy of Articulated Robots: A Comprehensive Approach to Evaluate and Improve Robot Accuracy for Contact Applications
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Traditionally, robots have primarily been used in tasks with minimalor no contact with the environment, such as material handling and painting.The articulated robot, with its flexibility, adaptability, affordability, andlarge workspace, is well-suited for a wide range of contact applications requiringcontinuous interaction with the environment. However, the inherent lowstructural stiffness of articulated robots can lead to significant deformationunder external loads, which, in turn, affects the accuracy of the end-effector’spositioning. Therefore, improving accuracy is crucial for the widespread adoptionof robotic systems in high-precision contact applications.This research investigates the impact of load and motion on the positioningaccuracy of articulated robots in contact applications. The analysisperformed on quasi-static deflections reveals that traditional static calibrationmethods can underestimate actual positioning errors by neglecting thecombined effects of load and motion.To address this, a model-based quasi-static compliance calibration methodis proposed. This method leverages a joint stiffness model to estimate andcompensate for robot deformation. Experimental results demonstrate significantaccuracy improvements, with positioning error reductions ranging from60% to 90%, depending on the robot, application, workspace, and load conditions.To enhance the practical applicability of the method, a balance amongaccuracy, computational efficiency, and ease of implementation is prioritized.The quasi-static approach results in a suitable compromise between accuracylevel and resource requirements.To further contribute to mainstream calibration accuracy improvements inindustrial settings, this work demonstrates the feasibility of transferring jointstiffness parameters, identified through quasi-static analysis, among identicalrobots sharing similar tasks, loads, and operational spaces. This transferbasedcompensation approach was compared to conventional compensationapproaches to assess its effectiveness in minimizing load-induced errors.Finally, to effectively evaluate robot performance in contact applications,a comprehensive set of testing conditions is proposed. These conditions considerfactors such as load, velocity, directionality, and workspace coverage,which can deliver a more rigorous assessment of robot capabilities.Future research directions include investigating the interplay betweenquasi-static and dynamic effects, exploring advanced modeling techniques thatcombine physics-based and data-driven approaches to address residual errors,and developing robust performance evaluation procedures for complex roboticsystems in emerging contact applications.

Abstract [sv]

Traditionellt har robotar använts för uppgifter med begränsad interaktionmed omgivningen, såsom materialhantering och målning. Den artikulärarobotens flexibilitet, anpassningsförmåga, överkomliga pris och stora arbetsområdegör den dock attraktiv även för mer komplexa uppgifter som kräverkontinuerlig kontakt med omgivningen. Den låga strukturella styvheten hosartikulära robotar kan dock leda till betydande deformationer vid yttre belastningar,vilket påverkar noggrannheten i sluteffektorns positionering. För attbredda användningen av robotsystem i högprecisionsapplikationer där kontaktmed omgivningen är avgörande, är det nödvändigt att förbättra derasnoggrannhet.Denna forskning undersöker hur belastning och rörelse påverkar positioneringsnoggrannhetenhos artikulära robotar i kontaktapplikationer. Analysenav kvasistatiska deformationer visar att traditionella statiska kalibreringsmetoderkan underskatta positioneringsfel, eftersom de inte beaktar de kombineradeeffekterna av last och rörelse.För att åtgärda detta föreslås en modellbaserad kvasistatisk kalibreringsmetodsom använder en ledstyvhetsmodell för att uppskatta och kompenseraför deformation. Experimentella resultat visar betydande noggrannhetsförbättringar,med felminskningar från 60% till 90%, beroende på robot, applikation,arbetsyta och belastningsförhållanden.För att öka metodens användbarhet prioriteras en balans mellan noggrannhet,effektivitet och implementering. Den kvasistatiska metoden ger enlämplig kompromiss inom noggrannhetsnivå och resurskrav. Dessutom, sombidrar till att göra förbättringar av kalibreringsnoggrannhet gemensamt i industriellamiljöer, demonstreras möjligheten att överföra ledens styvhet, identifieradmed den kvasistatiska metoden, bland en grupp identiska robotar somdelar liknande uppgifter, belastningar och operativt utrymme. Förmågan hosdenna överföringsbaserade kompensationsmetod för att minimera belastningsinduceradefel jämförs med den konventionella kompensationsmetoden.Slutligen föreslås ett omfattande kriterium för att utvärdera robotprestandai kontaktapplikationer, där faktorer som belastning, hastighet och arbetsytabeaktas. Detta möjliggör en mer noggrann och heltäckande bedömningav robotens kapacitet.Framtida forskning ska fokusera på samspelet mellan kvasistatiska och dynamiskaeffekter, utforska avancerade modelleringstekniker som kombinerarfysikbaserade och datadrivna metoder för att hantera kvarvarande fel, samtutveckla robusta prestandautvärderingsprocedurer för komplexa robotsystem.Målet är att ytterligare förbättra robotarnas noggrannhet och tillförlitligheti nya kontaktapplikationer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 87
Series
TRITA-ITM-AVL 2025 ; 6
Keywords
Articulated robot, Accuracy, Calibration, Compensation, Contact applications, Performance, Transferability, Artikulär robot, Noggrannhet, Kalibrering, Kompensation, Kontaktapplikationer, Prestanda, Överförbarhet
National Category
Production Engineering, Human Work Science and Ergonomics Robotics and automation
Research subject
Production Engineering
Identifiers
urn:nbn:se:kth:diva-361003 (URN)978-91-8106-224-3 (ISBN)
Public defence
2025-04-02, Kollegiesalen / https://kth-se.zoom.us/j/63614050355, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2025-03-10 Created: 2025-03-10 Last updated: 2025-03-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Gonzalez, MonicaTheissen, Nikolas AlexanderArchenti, Andreas

Search in DiVA

By author/editor
Gonzalez, MonicaTheissen, Nikolas AlexanderArchenti, Andreas
By organisation
Manufacturing and Metrology Systems
In the same journal
The International Journal of Advanced Manufacturing Technology
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 211 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf