kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Elastoplastic behavior of anisotropic, physically crosslinked hydrogel networks comprising stiff, charged fibrils in an electrolyte
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0003-0435-1150
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.ORCID iD: 0000-0002-2114-3014
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.ORCID iD: 0000-0002-2489-8439
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0003-0624-2185
Show others and affiliations
2023 (English)In: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 19, no 15, p. 2792-2800Article in journal (Refereed) Published
Abstract [en]

Fibrillar hydrogels are remarkably stiff, low-density networks that can hold vast amounts of water. These hydrogels can easily be made anisotropic by orienting the fibrils using different methods. Unlike the detailed and established descriptions of polymer gels, there is no coherent theoretical framework describing the elastoplastic behavior of fibrillar gels, especially concerning anisotropy. In this work, the swelling pressures of anisotropic fibrillar hydrogels made from cellulose nanofibrils were measured in the direction perpendicular to the fibril alignment. This experimental data was used to develop a model comprising three mechanical elements representing the network and the osmotic pressure due to non-ionic and ionic surface groups on the fibrils. At low solidity, the stiffness of the hydrogels was dominated by the ionic swelling pressure governed by the osmotic ingress of water. Fibrils with different functionality show the influence of aspect ratio, chemical functionality, and the remaining amount of hemicelluloses. This general model describes physically crosslinked hydrogels comprising fibrils with high flexural rigidity - that is, with a persistence length larger than the mesh size. The experimental technique is a framework to study and understand the importance of fibrillar networks for the evolution of multicellular organisms, like plants, and the influence of different components in plant cell walls.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC) , 2023. Vol. 19, no 15, p. 2792-2800
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-330921DOI: 10.1039/d2sm01571dISI: 000960684700001PubMedID: 36992628Scopus ID: 2-s2.0-85152114916OAI: oai:DiVA.org:kth-330921DiVA, id: diva2:1779609
Note

QC 20230704

Available from: 2023-07-04 Created: 2023-07-04 Last updated: 2024-04-29Bibliographically approved
In thesis
1. Tailoring and Characterization of Polymer-linked Fibrillar Structures
Open this publication in new window or tab >>Tailoring and Characterization of Polymer-linked Fibrillar Structures
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The development of sustainable and renewable materials is paramount in today’s society. As the most abundant biopolymer on Earth, cellulose from cellulose-rich fibres is an excellent alternative for advanced and innovative material solutions. Nonetheless, competing with the impressive material properties and the low manufacturing costs of fossil-based plastics imposes great challenges. To increase the potential of cellulose fibres in a broader set of applications, the material properties of cellulose need to be tuned depending on the application. An in-depth study of the fibre structure and the application of different tailoring techniques is required to induce tailoring of the physical and chemical properties of the cellulose fibre materials. 

This thesis focuses on the structure-property relationship of fibrillar hydrogel networks as model structures for the delignified wet-fibre wall. First, a mathematical framework was developed to describe the characteristics of the swelling and mechanical behaviour of anisotropic fibrillar structures, considering the fibril aspect ratio, surface chemistry of the fibrils, and electrolyte concentration in the system. A chemical functionalisation was then introduced to the fibrillar structure, which provided the CNFs with colloidal stability and the ability to participate in free radical polymerisation with monomers and telechelic oligomers. As a result, fibrillar networks were crosslinked with flexible polymer links that provided the network with different mechanical and chemical properties. Additionally, by tailoring the molecular weight of the crosslinks, the ionic strength of the solution, and even the aspect ratio of the fibrils, the mechanical properties of the network were tuned to be either stiffer or more ductile. 

Finally, an innovative and more sustainable approach was developed to introduce charge and alkene functionality to the fibres. Following the lessons learned from the CNF model investigations, a polymerisation approach was developed in the presence of functionalised fibres. The polymers were grown from the fibre wall, followed by radical crosslinking to create strong Fibre reinforced hydrogel structures. Depending on the application, the method can be easily applied to introduce other types of molecules and functionalities to the fibres and tailor the properties of the fibres to suit a wide range of applications.

Abstract [sv]

Utvecklingen av hållbara och förnyelsebara material är avgörande i dagens samhälle. Eftersom cellulosa ifrån växtfibrer är den mest förekommande biopolymeren på jorden är den ett utmärkt alternativ för användning i avancerade och innovativa materiallösningar. Det innebär dock en enorm utmaning att konkurrera med de imponerande materialegenskaperna och låga tillverkningskostnaderna hos fossilbaserade plaster. För att utnyttja den inneboende potentialen hos cellulosafibrerna och utveckla deras egenskapsrymd för användning i vidare tillämpningar är det helt nödvändigt att modifiera cellulosans materialegenskaper för att passa till specifika slutanvändningar. Det är därför nödvändigt att ingående studera hur olika modifieringstekniker kan användas för att skräddarsy fysikaliska och kemiska egenskaper hos cellulosan på olika strukturella nivåer i de delignifierade fibrerna.  

Arbetet i denna avhandling har fokuserats på att klarlägga struktur-egenskapsförhållandena för cellulosa-rika fibrilstrukturer. Initialt användes fibrillära hydrogelnätverk som modell för den delignifierade våtfibreväggen. Till att börja med utvecklades ett matematiskt ramverk för att beskriva det typiska svällningsbeteendet och de mekaniska egenskaperna hos de anisotropa fibrillstrukturerna med avseende på fibrillernas längs/tvärs förhållande, ytkemi och elektrolytkoncentration i systemet.  Efter detta modifierades fibrillerna på ett sådant sätt att de erhöll en god kolloidal stabilitet samtidigt som de försågs med en vinyl-funktionalitet som innebar att de kunde användas i friradikalpolymerisation med olika typer av monomerer och telecheliska oligomerer. Via denna typ av radikalpolymerisation var det möjligt att skapa fibrillnätverk med flexibla polymerkopplingar som resulterade i skräddarsydda mekaniska och kemiska egenskaper. Genom att kontrollera tvärbindningarnas molekylvikt, lösningens jonstyrka och fibrillernas längs/tvärs förhållande kunde nätverkets mekaniska egenskaper kontrolleras så att de antingen blev mer töjbara eller styva. 

Med hjälp av en innovativ och mer hållbar modifieringsteknik visade det sig vidare möjligt att samtidigt skapa hög laddning och att introducera en vinylfunktionalitet hos cellulosa-rika fibrer. Genom att använda de tidigare erfarenheterna ifrån de modifierade fibrillnätverken visade det sig möjligt att utveckla en polymerisationsmetod i närvaro av de funktionaliserade fibrer där polymerisation initierades både inuti och omkring de modifierade fibrerna. Polymererna ympades ifrån den modifierade fibreväggen både inuti och omkring fibrerna, följt av radikaltvärbindning för att skapa helt nya typer av starka, fibrebaserade hydrogelstrukturer. Beroende på den slutliga tillämpningen, av denna nya typ av fiberförstärkta hydrogeler, är det enkelt att använda metoden för att inkludera andra molekyler och funktionaliteter till fibrerna för att skräddarsy gelegenskaperna.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 58
Series
TRITA-CBH-FOU ; 2024:4
Keywords
Cellulose nanofibrils, hydrogels, cellulose fibres, functionalisation, structure-property relationships.
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-342125 (URN)978-91-8040-819-6 (ISBN)
Public defence
2024-02-09, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20240118

Embargo godkänt av skolchef Amelie Eriksson Karlström via e-post 2024-01-16

Available from: 2024-01-18 Created: 2024-01-16 Last updated: 2024-01-22Bibliographically approved
2. The properties of hydrated nanocellulose network structures
Open this publication in new window or tab >>The properties of hydrated nanocellulose network structures
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Long, slender cellulose nanofibrils (CNF) are unique with their high axial modulus, small diameter, high flexibility, and the possibility of chemical tailoring of, among other things, their surface charge density. The objective of this work has been to elucidate how the hydrogel network properties and how their related deformation mechanisms depend on CNF properties, concentration, and chemical environment. In addition, the influence of CNF characteristics on the formation of the structure and properties of isotropic hydrogels, anisotropic hydrogels, and aerogels has been studied. 

This was done by combining theoretical models describing the CNF network's topology and mechanics with high-resolution experiments to validate the theoretical models. Furthermore, the properties of the fibrils have been characterized in detail and linked to the material properties of materials formed from the fibrils. Finally, the CNF networks in this work have been functionalized in two different ways. In the first case, a flow channel was created within the hydrogel network at extremely low CNF concentrations, that could be surface treated with a Layer-by-layer (LbL) methodology with a consecutive addition of oppositely charged polyelectrolytes/nanoparticles to add new functionalities to the channels. Secondly, wet stable aerogels, prepared at higher concentrations of CNFs, were treated using the LbL methodology to adjust the aerogels' surface structure and surface energy, thereby controlling the liquid spreading rate properties of the formed networks.

The most important findings in this work are that CNF network topology and network mechanics can be described using theoretical, rather non-complicated, elastoplastic models. Furthermore, at lower concentrations of CNFs, the network structure is formed in a more organized way, meaning that the fibrils have the time and freedom to seek their optimal contact points during the network formation from a thermodynamic free energy point of view. It has also been shown that the low-density, wet fibrillar network structures formed by neutralizing the charges of the fibrils deform by sliding in fibril/fibril contacts upon straining the network structure above a critical stress. These fibril/fibril contacts are also shown to be re-established when the stress is released, provided that the networks have not been subjected to a macroscopic collapse. Finally, these cellulose networks show great potential for further functionalization using the LbL modification methodology.

Abstract [sv]

Långa, smala cellulosananofibriller (CNF) är unika med sin höga axiella E-modul, låga diameter, höga flexibilitet och stora möjlighet till kemisk modifiering som bland annat använts för att styra fibrillernas ytladdningstäthet. Syftet med detta arbete har varit att klarlägga hur egenskaperna hos hydrogeler, framställda av nanofibriller, och dess deformationsmekanismer, kan kopplas till olika grundläggande CNF-egenskaper, koncentration och kemisk miljö. Dessutom har vi studerat inverkan av hur CNF-egenskaperna påverkar den bildade nätverksstrukturen och hur de påverkar de slutliga egenskaperna hos isotropa- och anisotropa hydrogeler och aerogeler som formats ifrån de olika fibrillslagen. 

Den strategi som användes, och visade sig mycket framgångsrik, för att nå dessa mål, var att kombinera teoretiska modeller som beskriver CNF-nätverkets topologi och mekanik med specialdesignade experiment för att validera de teoretiska modellerna. Vidare har ett omfattande arbete lagts ned på att karakterisera fibrillernas kemiska, strukturella och morfologiska egenskaper och att koppla dessa till de funktionella materialegenskaperna hos de material som har tillverkats ifrån dessa fibriller. Slutligen har de färdiga CNF-nätverken funktionaliserats på två olika sätt. I det första fallet skapades en stabil flödeskanal i ett hydrogelnätverk, som preparerats vid extremt låg CNF-koncentration, och det visade sig vara möjligt att ytbehandla denna kanal med en lager för lager (LbL) metod där motladdade polyelektrolyter och/eller nanopartiklar användes för att tillföra nya egenskaper till kanalen. I det andra fallet behandlades förtillverkade, våtstabila aerogeler, som preparerats vid högre koncentration av CNF, med en LbL-behandling för att kontrollera ytstruktur och ytkemi hos aerogelerna, och att därigenom kontrollera vätskespridningshastigheten hos nätverken.

De viktigaste resultaten i detta arbete är att CNF-nätverkets topologi och nätverksmekanik kan beskrivas med hjälp av relativt okomplicerade teoretiska elastoplastiska modeller. Vidare, har det varit möjligt att visa att vid lägre CNF koncentrationer så bildas nätverksstrukturen på ett mer organiserat sätt, vilket innebär att fibrillerna har tid och friheten att söka sina kontaktpunkter under nätverksbildningen för att nå en optimal struktur utifrån ett termodynamiskt fritt energiperspektiv. Det har också visats att den våta fibrillära nätverksstrukturen hos hydrogelerna deformeras genom att fibrillkontakterna börjar glida vid en pålagd spänning på nätverksstrukturen som överskrider en viss gränsnivå och att fibrillkontakterna återbildas när den pålagda spänningen tas bort. Detta förutsatt att nätverken inte utsatts för en makroskopisk kollaps. Slutligen har vi lyckats visa hur det är möjligt att funktionalisera både hydrogeler och arogeler med hjälp av den så kallade LbL metoden för att skapa nya egenskaper hos nätverken.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 78
Series
TRITA-CBH-FOU ; 2024:18
Keywords
Cellulose nanofibrils, Colloidal interactions, colloidal gels, network structure, fibrillar network models, Cellulosa nanofibriller, Kolloidala interaktioner, Kolloidala geler, nätverksstruktur, fibrillära nätverksmodeller
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-346029 (URN)978-91-8040-919-3 (ISBN)
Public defence
2024-05-24, F3 (Flodis),, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation
Note

QC 2024-04-30

Embargo godkänt av skolchef Amelie Eriksson Karlström via e-post 2024-04-18.

Available from: 2024-04-30 Created: 2024-04-29 Last updated: 2024-05-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Östmans, RebeccaCortes Ruiz, Maria F.Rostami, JowanSellman, Farhiya AlexWågberg, LarsBenselfelt, Tobias

Search in DiVA

By author/editor
Östmans, RebeccaCortes Ruiz, Maria F.Rostami, JowanSellman, Farhiya AlexWågberg, LarsLindström, Stefan B.Benselfelt, Tobias
By organisation
Fibre TechnologyWallenberg Wood Science Center
In the same journal
Soft Matter
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 68 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf