kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrophoretic assembly and electronic transport properties of rapidly synthesized Sb2Te3 nanoparticles
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-2537-8216
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-5672-5727
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0003-0493-7792
Show others and affiliations
2023 (English)In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 637, article id 157930Article in journal (Refereed) Published
Abstract [en]

With the recent advances in thermoelectric (TE) technology, there is an increasing demand to develop thick films that would enable large-scale TE devices. Assembly of TE-films from size and morphology-controlled nano particles has been a challenging issue that can be addressed by the use of electrophoretic deposition (EPD) technique. In this work, morphology-controlled Sb2Te3 nanoparticles were synthesized through microwave assisted thermolysis, which were subsequently used for EPD of TE films on specially developed glass substrates. The electronic transport properties were measured in the temp-range of 22-45 degrees C. The as-made EPD films showed a high initial resistance, ascribed to high porosity and the presence of surface oxide/passivating layers. The impact of two types of small organic molecules-as hexanedithiol and dodecanethiol, on the electronic transport was investigated, resulting in a significant improvement in the electrical conductivity of the films. The XPS analysis suggests that the thiols bind to the surface of nanoparticles through formation of sulfides. Seebeck coefficient in the range of + 160 to + 190 & mu;V/K was measured, revealing the p-type transport through the deposited films. Finally, a power factor of about 2.5 & mu;W/K2.m was estimated the first time for p-type EPD films, revealing the potential of the developed nanoparticles and substrate, the small molecule additives and the EPD process presented in this work.

Place, publisher, year, edition, pages
Elsevier BV , 2023. Vol. 637, article id 157930
Keywords [en]
Thermoelectric, Antimony telluride, Sb 2 Te 3, Electrophoretic deposition, EPD, Thermoelectric power factor, Seebeck coefficient, Colloidal synthesis and stabilization, Ligand exchange, Photolithography
National Category
Other Physics Topics
Identifiers
URN: urn:nbn:se:kth:diva-334293DOI: 10.1016/j.apsusc.2023.157930ISI: 001039594400001Scopus ID: 2-s2.0-85164220691OAI: oai:DiVA.org:kth-334293DiVA, id: diva2:1789180
Note

QC 20231122

Available from: 2023-08-18 Created: 2023-08-18 Last updated: 2023-11-22Bibliographically approved
In thesis
1. Synthesis, Electrophoretic Deposition, and Characterization of Nanostructured Thermoelectric Materials
Open this publication in new window or tab >>Synthesis, Electrophoretic Deposition, and Characterization of Nanostructured Thermoelectric Materials
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The world’s increasing demand for energy and supplying this energy dominantlyfrom fossil fuels has a major impact on global climate change. Theenergy crisis has gotten more alarming in the recent years which increasedthe motivation for replacing fossil fuels with greener routes for energy harvest.There are various technologies developed for harvesting energy, andthe ability to recover energy from waste heat at a wide range of temperatures (from room temperature to more than 1000C) distinguished thethermoelectric (TE) materials from the rest. The drawback about the thermoelectricdevices is that they are too inefficient to be cost-effective in manyapplications, and the developments in nanotechnology is providing somesolutions to increase the efficiency of these materials and devices.

The field of thermoelectrics suffer from large discrepancy of theresults in the literature, which is generally attributed to the variations inthe materials qualities, urging a need for the development of synthetictechniques that can lead to large-scale TE materials in reasonable timeframe. In this thesis, three different routes for rapid, scalable, and energyefficient, wet-chemical synthetic techniques for bismuth chalcogenidecompounds are presented. Microwave assisted heating during reactionprovided better control over the particle properties while reducing thereaction time and carbon footprint of the synthetic method, leading tomaterials bismuth chalcogenides with promising TE transport propertiesin a scalable and reproducible manner.

Hybrid TE materials, and recently emerging solid-liquid TE materialsconcept, requires fabrication of porous TE films, to study the effect of variousinterfaces, including solid and liquid electrolytes. For this purpose, wedeveloped and optimized the electrophoretic deposition (EPD) process toprepare nanostructured porous TE films by preserving the size and morphologyof the as-synthesized bismuth chalcogenide particles. A new glass based substrate is designed and fabricated to study the electronic transportproperties of the electrically active films prepared via EPD. Using this platform,we could clearly demonstrate the significance of the synthetic methodon the surface chemistry and resultant transport properties of the TE materials.The methods and materials developed in this thesis are expected toimpact and expedite further developments in the field of thermoelectrics.

Abstract [sv]

Världens ökande efterfrågan på energi och att tillhandahålla denna energifrämst från fossila bränslen har en betydande inverkan på den globalaklimatförändringen. Energikrisen har blivit allt mer alarmerande de senasteåren, vilket har ökat motivationen att ersätta fossila bränslen med grönaenergilösningar. Det har utvecklats olika tekniker för energiutvinning, menförmågan att återvinna energi från spillvärme vid ett brett temperaturintervall(från rumstemperatur till över 1000 °C) skiljer termoelektriska (TE)material från övriga. Nackdelen med TE-enheter är att de är för ineffektivaför att vara kostnadseffektiva i många tillämpningar, där utvecklingen inomnanoteknik erbjuder vissa lösningar för att öka effektiviteten hos dessamaterial och enheter.

Inom området för TE-material finns det stora avvikelser i resultaten i litteraturen,vilket i allmänhet tillskrivs variationer i materialkvaliteten. Detfinns ett behov av att utveckla syntetiska tekniker som kan leda till högeffektivaTE-material i storskalig produktion på rimlig tid. I denna avhandlingpresenteras tre olika metoder för snabb, skalbar och energieffektiv våtkemisksyntetisering av bismutkalkogenidföreningar. Mikrovågsassisteraduppvärmning under reaktionen gav bättre kontroll över partikelegenskapernasamtidigt som reaktionstiden och koldioxidavtrycket för den syntetiskametoden minskade, vilket resulterade i bismutkalkogenider med lovandeTE-transportegenskaper på ett skalbart och reproducerbart sätt.

Hybrida TE-material och det nyligen framkomna konceptet med fastvätska-TE-material kräver framställning av porösa TE-filmer för att studeraeffekten av olika gränssnitt, inklusive fasta och flytande elektrolyter. Fördetta ändamål har vi utvecklat och optimerat elektroforesdepositionsprocessen(EPD) för att framställa nanostrukturerade porösa TE-filmer genomatt bevara storlek och morfologi hos de syntetiserade bismutkalkogenidpartiklarna. En ett nytt substrat baserat på glas har designats och tillverkats föratt studera de elektroniska transportegenskaperna hos de elektriskt aktivafilmerna som framställts via EPD. Med denna plattform kunde vi tydligt visabetydelsen av syntesmetoden för yt-kemin och de resulterande transportegenskapernahos TE-filmerna. De metoder och material som utvecklats idenna avhandling förväntas påverka och påskynda vidareutvecklingen inomforskningsområdet för TE-material.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023
Series
TRITA-SCI-FOU ; 2023:38
Keywords
Thermoelectric, Bismuth telluride, Antimony telluride, Hydrothermal synthesis, Thermolysis, Polyol, Electrophoretic deposition, EPD, Seebeck coefficient, Thermoelectric power factor, Colloidal stabilization
National Category
Nano Technology Materials Chemistry
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-334386 (URN)978-91-8040-651-2 (ISBN)
Public defence
2023-09-15, FA32, Roslagstullsbacken 21, Stockholm, 13:00
Opponent
Supervisors
Note

QC 2023-08-21

Available from: 2023-08-21 Created: 2023-08-18 Last updated: 2023-08-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Batili, HazalHamawandi, BejanParsa, ParvaErgül, AdemToprak, Muhammet

Search in DiVA

By author/editor
Batili, HazalHamawandi, BejanParsa, ParvaErgül, AdemToprak, Muhammet
By organisation
Biomedical and X-ray Physics
In the same journal
Applied Surface Science
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf