kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The effect of contact angle hysteresis on adroplet in a viscoelastic two-phase system
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0001-6819-214X
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0003-4317-1726
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We investigate the dynamic behaviour of a two-dimensional (2D) droplet adhering to a wall in Poiseuille flow at low Reynolds numbers, in a system where either the droplet is viscoelastic (V/N) or the surrounding medium (N/V). The fluid viscoelasticity has been modeled by the Giesekus constitutive equation, and the Cahn–Hilliard Phase-Field method is used to capture the interface between two phases. The contact angle hysteresis is represented by an advancing contact angle and a receding contact angle . The results reveal that the deformation of the viscoelastic drop over time is changed due to the presence of polymeric molecules, and it can be categorized in two stages prior to depinning of the contact lines. In the first stage, the viscoelastic droplet speeds up and deforms faster, while in the second stage, the Newtonian counterpart accelerates and its deformation outpaces the viscoelastic droplet. The deformation of viscoelastic drop is retarded significantly in the second stage with increasing Deborah number De. In the V/N case, the viscous bending is enhanced on the receding side for small De, but it is weakened by further increase in De, and this non-monotonic behavior brings about an increase in the receding contact line velocity at small De and a decrease at large De. On the advancing side, the viscous bending is decreased monotonically, and hence the advancing contact line velocity is decreased with increasing De. The non-monotonic behavior on the receding side is attributed to the emergence of outward pulling stresses in the vicinity of the receding contact line and the inception of strain-hardening at higher De, while the reduction in the viscous bending at the advancing side is the result of just strain-hardening due to the presence of dominant extensional flow on the advancing side. Finally, in the N/V system, the viscoelasticity of the medium suppresses the droplet deformation on both receding and advancing sides, and this effect is more pronounced with increasing De; the weakening effect of viscous bending is enhanced significantly at the advancing side by increasing the Giesekus mobility parameter in the N/V system. These results give a thorough understanding of viscoelastic effect on both drop deformation and depinning of both contact lines over a surface with contact angle hysteresis.

Keywords [en]
Wetting, viscoelasticity, contact angle hysteresis
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-334510OAI: oai:DiVA.org:kth-334510DiVA, id: diva2:1789972
Note

QC 20230822

Available from: 2023-08-21 Created: 2023-08-21 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Numerical simulation of non-Newtonian fluids flow over surfaces
Open this publication in new window or tab >>Numerical simulation of non-Newtonian fluids flow over surfaces
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Wetting of surfaces by droplets of non-Newtonian fluids is important for various industrial and natural processes such as coating and cleaning of surfaces and inkjet printing, to name a few. Viscoelastic fluids are compounds of a very small amount of polymers and solvent. They are categorized as non-Newtonian fluids, and they exhibit both elasticity and shear dependent viscosity. Despite their relevance and abundance in our environment, dynamic wetting of viscoelastic fluids has been studied much less than that of the Newtonian fluids. Furthermore, many of the viscoelastic studies make simplifying assumptions of the contact line movement, for example, a constant value of the contact angle independent of the spreading speed of the droplet.

In this thesis work, we implement a numerical framework for dynamic contact line problems of viscoelastic fluids, taking into account contact line friction or contact line hysteresis when necessary. We solve the coupled Cahn-Hilliard, Navier-Stokes and viscoelastic constitutive models to reveal detailed information about the flow physics, such as the polymeric stress distributions inside the drops. Especially interesting is the vicinity of discontinuity regions e.g. the contact-line and liquid bridge between the coalescing drops. First, we present the idea of dual-resolution grids to address the high interfacial resolution requirements for a viscoelastic two-phase flow. In particular, a dual-resolution algorithm is presented and validated for the wetting of viscoelastic fluids. Secondly, we apply our algorithm to investigate the effect of non-Newtonian properties on jumping of two merging droplets from a superhydrophobic surface, a problem which might be of interest for self-cleaning surfaces. In the last part, the physical effects of non-Newtonian properties are investigated on both the initial wetting regime on a smooth hydrophilic surface and the pinning and depinning of a droplet in the presence of the contact angle hysteresis.

Abstract [sv]

Vätning av icke-newtonska vätskor på en yta är ett viktigt och vanligt förekommande problem i naturliga och industriella processer såsom ytrengöring, olika ytbeläggningar, bläckstråleskrivare för att nämna några exempel. Viskoelastiska vätskor består av polymerer och lösningsmedel och hör till kategorin icke-Newtonska vätskor, och de uppvisar båda elasticitet och skjuvningsberoende viskositet. Trots icke-Newtonska vätskors relevans i vardagen har deras vätningsegenskaper studerats mycket mindre hittils än processen för Newtonska vätskor. Vidare så används ofta förenklade antaganden av kontaktlinjens rörelse, såsom ett konstant värde av kontaktvinkeln som inte beror på spridningshastigheten.

I detta arbete implementerar vi en numerisk lösningsmetod för dynamiska vätningsproblem av viskoelastiska droppar. Vi löser de kopplade Cahn-Hilliard, Navier-Stokes och viskoelastiska konstitutiva ekvationerna tillsammans för att få fram detaljerad information av strömningen såsom fördelningen av viskoelastiska spänningar inuti droppen. Speciellt intressant är att fokusera på områden där egenskaperna varierar diskontinuerligt, till exempel kontaktlinjer och i vätskebryggan mellan koalescerande droppar. Först presenterar vi tanken bakom duala nät för att öka upplösningen nära ytan i viskoelastiska tvåfasflöden. I synnerhet presenterar vi ekvationerna och valideringen av den numeriska lösaren för vätning av viskoelastiska vätskor. I den andra delen undersöker vi effekten av de icke-newtonska egenskaperna påverkar två koalescerande droppar som hoppar från en superhydrofob yta, ett problem av potentiellt intresse för självrengörande ytor. I den sista delen undersöks de viskoelastiska effekternas betydelse för snabba vätningsprocesser på en slät hydrofil yta samt för rörelsen av droppar med kontaktlinjehysteres.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 67
Series
TRITA-SCI-FOU ; 2023:43
Keywords
dynamic wetting, viscoelasticity, non-Newtonian fluids, contact- angle hysteresis, droplet spreading, self-propelled jumping, dynamisk vätning, viskoelasticitet, icke-Newtonska vätskor, kontaktlinjehysteres, dropparnas spridning på ytor, spontan hoppning av droppar från ytor
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-334511 (URN)978-91-8040-682-6 (ISBN)
Public defence
2023-09-15, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 230824

Available from: 2023-08-24 Created: 2023-08-21 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Bazesefidpar, KazemTammisola, Outi

Search in DiVA

By author/editor
Bazesefidpar, KazemTammisola, Outi
By organisation
Linné Flow Center, FLOWFluid Mechanics and Engineering Acoustics
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 224 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf