kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany; Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405, Talence, France.
Nichtlineare Optik und Quantenelektronik, Institut für Theoretische Physik, Technische Universität Berlin, 10623, Berlin, Germany.
Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany.
Show others and affiliations
2023 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 14, no 1, article id 5057Article in journal (Refereed) Published
Abstract [en]

Atomically thin layered van der Waals heterostructures feature exotic and emergent optoelectronic properties. With growing interest in these novel quantum materials, the microscopic understanding of fundamental interfacial coupling mechanisms is of capital importance. Here, using multidimensional photoemission spectroscopy, we provide a layer- and momentum-resolved view on ultrafast interlayer electron and energy transfer in a monolayer-WSe2/graphene heterostructure. Depending on the nature of the optically prepared state, we find the different dominating transfer mechanisms: while electron injection from graphene to WSe2 is observed after photoexcitation of quasi-free hot carriers in the graphene layer, we establish an interfacial Meitner-Auger energy transfer process following the excitation of excitons in WSe2. By analysing the time-energy-momentum distributions of excited-state carriers with a rate-equation model, we distinguish these two types of interfacial dynamics and identify the ultrafast conversion of excitons in WSe2 to valence band transitions in graphene. Microscopic calculations find interfacial dipole-monopole coupling underlying the Meitner-Auger energy transfer to dominate over conventional Förster- and Dexter-type interactions, in agreement with the experimental observations. The energy transfer mechanism revealed here might enable new hot-carrier-based device concepts with van der Waals heterostructures.

Place, publisher, year, edition, pages
Springer Nature , 2023. Vol. 14, no 1, article id 5057
National Category
Condensed Matter Physics Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:kth:diva-334944DOI: 10.1038/s41467-023-40815-8ISI: 001051577000005PubMedID: 37598179Scopus ID: 2-s2.0-85168378967OAI: oai:DiVA.org:kth-334944DiVA, id: diva2:1792695
Note

QC 20230830

Available from: 2023-08-30 Created: 2023-08-30 Last updated: 2024-03-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Dendzik, Maciej

Search in DiVA

By author/editor
Dendzik, Maciej
By organisation
Materials and Nanophysics
In the same journal
Nature Communications
Condensed Matter PhysicsAtom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 25 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf