kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
M-LIO: Multi-lidar, multi-IMU odometry with sensor dropout tolerance
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Teknisk informationsvetenskap.
Stockholm, Sweden.
Oxford Robotics Institute University of Oxford, Oxford, United Kingdom.
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Teknisk informationsvetenskap.ORCID-id: 0000-0003-2638-6047
2023 (Engelska)Ingår i: IV 2023 - IEEE Intelligent Vehicles Symposium, Proceedings, Institute of Electrical and Electronics Engineers (IEEE) , 2023Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We present a robust system for state estimation that fuses measurements from multiple lidars and inertial sensors with GNSS data. To initiate the method, we use the prior GNSS pose information. We then perform motion estimation in real-time, which produces robust motion estimates in a global frame by fusing lidar and IMU signals with GNSS translation components using a factor graph framework. We also propose methods to account for signal loss with a novel synchronization and fusion mechanism. To validate our approach extensive tests were carried out on data collected using Scania test vehicles (5 sequences for a total of ≈ 7 Km). From our evaluations, we show an average improvement of 61% in relative translation and 42% rotational error compared to a state-of-the-art estimator fusing a single lidar/inertial sensor pair, in sensor dropout scenarios.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE) , 2023.
Nyckelord [en]
Odometry estimation, Sensor fusion, SLAM
Nationell ämneskategori
Datorseende och robotik (autonoma system) Signalbehandling
Identifikatorer
URN: urn:nbn:se:kth:diva-335040DOI: 10.1109/IV55152.2023.10186548ISI: 001042247300023Scopus ID: 2-s2.0-85168001725OAI: oai:DiVA.org:kth-335040DiVA, id: diva2:1793074
Konferens
34th IEEE Intelligent Vehicles Symposium, IV 2023, Anchorage, United States of America, Jun 4 2023 - Jun 7 2023
Anmärkning

Part of ISBN 9798350346916

QC 20230831

Tillgänglig från: 2023-08-31 Skapad: 2023-08-31 Senast uppdaterad: 2024-02-13Bibliografiskt granskad
Ingår i avhandling
1. State estimation with auto-calibrated sensor setup
Öppna denna publikation i ny flik eller fönster >>State estimation with auto-calibrated sensor setup
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Localization and mapping is one of the key aspects of driving autonomously in unstructured environments. Often such vehicles are equipped with multiple sensor modalities to create a 360o sensing coverage and add redundancy to handle sensor dropout scenarios. As the vehicles operate in underground mining and dense urban environments the Global navigation satellite system (GNSS) is often unreliable. Hence, to create a robust localization system different sensor modalities like camera, lidar and IMU are used along with a GNSS solution. The system must handle sensor dropouts and work in real-time (~15 Hz), so that there is enough computation budget left for other tasks like planning and control. Additionally, precise localization is also needed to map the environment, which may be later used for re-localization of the autonomous vehicles as well. Finally, for all of these to work seamlessly, accurate calibration of the sensors is of utmost importance.

In this PhD thesis, first, a robust system for state estimation that fuses measurements from multiple lidars and inertial sensors with GNSS data is presented. State estimation was performed in real-time, which produced robust motion estimates in a global frame by fusing lidar and IMU signals with GNSS components using a factor graph framework. The proposed method handled signal loss with a novel synchronization and fusion mechanism. To validate the approach extensive tests were carried out on data collected using Scania test vehicles (5 sequences for a total of ~ 7 Km). An average improvement of 61% in relative translation and 42% rotational error compared to a state-of-the-art estimator fusing a single lidar/inertial sensor pair is reported.  

Since precise calibration is needed for the localization and mapping tasks, in this thesis, methods for real-time calibration of the sensor setup is proposed. First, a method is proposed to calibrate sensors with non-overlapping field-of-view. The calibration quality is verified by mapping known features in the environment. Nevertheless, the verification process was not real-time and no observability analysis was performed which could give us an indicator of the analytical traceability of the trajectory required for motion-based online calibration. Hence, a new method is proposed where calibration and verification were performed in real-time by matching estimated sensor poses in real-time with observability analysis. Both of these methods relied on estimating the sensor poses using the state estimator developed in our earlier works. However, state estimators have inherent drifts and they are computationally intensive as well. Thus, another novel method is developed where the sensors could be calibrated in real-time without the need for any state estimation. 

Ort, förlag, år, upplaga, sidor
KTH Royal Institute of Technology, 2024. s. 151
Serie
TRITA-EECS-AVL ; 2024:8
Nyckelord
SLAM, Sensor calibration, Autonomous driving
Nationell ämneskategori
Signalbehandling Robotteknik och automation
Forskningsämne
Elektro- och systemteknik
Identifikatorer
urn:nbn:se:kth:diva-343412 (URN)978-91-8040-806-6 (ISBN)
Disputation
2024-03-08, https://kth-se.zoom.us/s/63372097801, F3, Lindstedtsvägen 26, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF)
Anmärkning

QC 20240213

Tillgänglig från: 2024-02-14 Skapad: 2024-02-12 Senast uppdaterad: 2024-03-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Das, SandipanChatterjee, Saikat

Sök vidare i DiVA

Av författaren/redaktören
Das, SandipanChatterjee, Saikat
Av organisationen
Teknisk informationsvetenskap
Datorseende och robotik (autonoma system)Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 92 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf