The pursuit of advanced fiber laser technologies has driven research toward unconventional manufacturing techniques. In this work, we present an erbium-doped fiber laser made using powder-based additive manufacturing. An Er3+/Al3+ co-doped silica glass rod was printed using laser powder deposition and then used as the core material in a fiber preform. The fiber drawn from the preform exhibited the complete, desired functionality linked to Er3+ doping. To demonstrate this, a standing wave laser cavity was formed with the feedback attained from the cleaved ends of the manufactured fiber. The high quality of the fiber is showcased through a low background loss, single-mode operation, a 9.4% laser slope efficiency, and an output of 4.5 mW, limited by the available pump power. This proof-of-concept opens up promising areas for rapid fabrication and development of high-performance fibers and fiber lasers.
QC 20231215