kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Exploring nanofibrous networks with x-ray photon correlation spectroscopy through a digital twin
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Department of Chemistry, Stony Brook University, Stony Brook, 11794-3400, NY, United States.ORCID-id: 0000-0002-2346-7063
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.ORCID-id: 0000-0002-1195-1405
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Physical review. E, ISSN 2470-0045, E-ISSN 2470-0053, Vol. 108, nr 1, artikel-id 014607Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We demonstrate a framework of interpreting data from x-ray photon correlation spectroscopy experiments with the aid of numerical simulations to describe nanoscale dynamics in soft matter. This is exemplified with the transport of passive tracer gold nanoparticles in networks of charge-stabilized cellulose nanofibers. The main structure of dynamic modes in reciprocal space could be replicated with a simulated system of confined Brownian motion, a digital twin, allowing for a direct measurement of important effective material properties describing the local environment of the tracers. 

Ort, förlag, år, upplaga, sidor
2023. Vol. 108, nr 1, artikel-id 014607
Nyckelord [en]
Cellulose nanofibers, Gold nanoparticle, Gold Nanoparticles, In networks, Main structure, Nano scale, Nano-fibrous, Passive tracers, Soft matter, X-ray photon correlation spectroscopy
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
URN: urn:nbn:se:kth:diva-335240DOI: 10.1103/physreve.108.014607ISI: 001055203100002PubMedID: 37583188Scopus ID: 2-s2.0-85166735615OAI: oai:DiVA.org:kth-335240DiVA, id: diva2:1793869
Anmärkning

QC 20230904

Tillgänglig från: 2023-09-04 Skapad: 2023-09-04 Senast uppdaterad: 2024-05-31Bibliografiskt granskad
Ingår i avhandling
1. Dynamics and interactions in entangled nanofibre dispersions
Öppna denna publikation i ny flik eller fönster >>Dynamics and interactions in entangled nanofibre dispersions
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Biopolymers and their networks are fundamental to numerous biological and synthetic systems, with applications ranging from extracellular matrices in biological tissues to engineered nanostructured materials like cellulose-based nanocomposites. Understanding the dynamics of biopolymers in these networks is crucial due to their potential in material science and biotechnology, such as in developing sustainable materials and enhancing drug delivery mechanisms. The intricate network structures, from fibrous matrices in natural systems to designed frameworks in advanced materials, play a pivotal role in determining the mechanical and transport properties of the overall system.

This thesis delves into the dynamics of biopolymers, focusing specifically on the diffusion processes within such networks. The complexity of biopolymer behavior in networked environments involves multiple factors including polymer stiffness, network structure, and the interaction between biopolymer components. The diffusion of biopolymer fibres themselves, as well as nanoparticles within these networks, is explored through detailed coarse-grained molecular dynamics simulations. These simulations aim to model the nuanced interaction dynamics that influence diffusion, providing insights into how these factors affect biopolymer networks' rheological properties and functional capabilities.

This work contributes to the broader understanding of how biopolymers behave in complex environments by investigating the fundamental mechanisms of diffusion in biopolymer networks. It addresses the need for a deeper exploration of biopolymer dynamics to inform the design and synthesis of new biomaterials and bio-based materials. The findings from this thesis are expected to offer implications for enhancing the functionality of biopolymer-based systems in various applications, from improving the efficiency of biomaterials used in medical applications to optimizing the performance of bio-based composites in industrial applications. 

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2024
Serie
TRITA-SCI-FOU ; 2024:25
Nationell ämneskategori
Den kondenserade materiens fysik
Forskningsämne
Teknisk mekanik
Identifikatorer
urn:nbn:se:kth:diva-346647 (URN)978-91-8040-936-0 (ISBN)
Disputation
2024-06-13, D1, Lindstedtsvägen 9, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC240527

Tillgänglig från: 2024-05-27 Skapad: 2024-05-21 Senast uppdaterad: 2024-06-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Rosén, TomasGordeyeva, KorneliyaMotezakker, Ahmad RezaSöderberg, Daniel

Sök vidare i DiVA

Av författaren/redaktören
Rosén, TomasHe, HongRuiGordeyeva, KorneliyaMotezakker, Ahmad RezaSöderberg, DanielHsiao, Benjamin S.
Av organisationen
FiberprocesserWallenberg Wood Science CenterFiber- och polymerteknologiStrömningsmekanik och Teknisk Akustik
I samma tidskrift
Physical review. E
Den kondenserade materiens fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 111 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf