kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Holistic Design Approach to the Mathematical Modelling of Induction Motors for Vehicle Design
KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. (Conceptual Vehicle Design)ORCID iD: 0000-0001-9518-0056
KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.ORCID iD: 0000-0003-1583-4625
KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.ORCID iD: 0000-0003-0176-5358
2023 (English)In: Procedia CIRP, 2023, Vol. 119, p. 1246-1251Conference paper, Published paper (Refereed)
Abstract [en]

In early-stage vehicle design, there is a significant lack of knowledge about the impact of design requirements on the design of subsystems, theresulting knock-on effects between subsystems and the vehicle’s overall performance. This leads to a sub-optimal vehicle design with increaseddesign iterations. To mitigate this lack of knowledge, a cross-scalar design tool consisting of an induction motor model is presented in this paper.The tool calculates the motor’s attributes, namely its volume, mass, and the performance it can deliver to satisfy a given drive cycle’s requirements.This is achieved by breaking down the drive cycle requirements into motor parameters from which the various power losses are derived. Thesekey losses are then utilised to develop the torque/speed curve. Furthermore, it is proposed that the motor’s attributes can be used to design othersubsystems and consequently analyse their interaction effects. For example, the motor’s attributes can be used to design regenerative brakes andconsequently analyse their influence on brake wear, lifetime, and energy savings. Thus, the design tool enables the design of efficient vehicles withminimised design iterations by analysing the influence of design requirements on the subsystem’s design and the consequent interaction effectsamong the subsystems and on the vehicle’s overall performance.

Place, publisher, year, edition, pages
2023. Vol. 119, p. 1246-1251
Series
Procedia CIRP, ISSN 2212-8271
Keywords [en]
Early-stage design; Design tool; Subsystem Interaction; Induction Motor Model
National Category
Vehicle and Aerospace Engineering
Research subject
Vehicle and Maritime Engineering
Identifiers
URN: urn:nbn:se:kth:diva-337384DOI: 10.1016/j.procir.2023.02.193Scopus ID: 2-s2.0-85169913726OAI: oai:DiVA.org:kth-337384DiVA, id: diva2:1801694
Conference
The 33rd CIRP Design Conference, Sydney, Australia, May 17-19, 2023
Note

QC 20231002

Available from: 2023-10-02 Created: 2023-10-02 Last updated: 2025-02-14Bibliographically approved
In thesis
1. Vehicle Conceptualisation, Compactness, and Subsystem Interaction: A network approach to design and analyse the complex interdependencies in vehicles
Open this publication in new window or tab >>Vehicle Conceptualisation, Compactness, and Subsystem Interaction: A network approach to design and analyse the complex interdependencies in vehicles
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The conventional approach to vehicle design is restrictive, limited, andbiased. This often leads to sub-optimal utilisation of vehicle capabilities and allocated resources and ultimately entails the repercussions of designing andlater on an using an inefficient vehicle. To overcome these limitations, it is important to gain a deeper understanding of the interaction effects at component,subsystem, and system level. In this thesis, the research is focused on identifying appropriate methods and developing robust models to facilitate the interaction analysis.

To scrutinise and identify appropriate methods, criteria were developed.Initially, the Design Structure Matrix (DSM) and its variations were examined.While DSM proved to be fundamental for capturing interaction effects,it lacked the ability to answer questions about the structure and behaviour ofinteractions and to predict unintended effects. Therefore, network theory wasexplored as a complementary method to DSM which was capable of providing insights into interaction structures and identifying influential variables.

Subsequently, two criteria were established to identify subsystems significant to interaction analysis: high connectivity to other subsystems and multidisciplinary composition. The traction motor was observed to satisfyboth criteria as it had higher connectivity with other subsystems and was composed of multiple disciplines. Therefore, a detailed model of an induction motor was developed to enable the interaction analysis.

The induction motor model was integrated into a cross-scalar design tool.The tool employed a two-step process: translating operational parametersto motor inputs using Newtonian equations and deriving physical attributes,performance characteristics, and performance attributes of the motor. Comparing the obtained performance characteristics curve against existing studiesvalidated the model’s reliability and capabilities. The design tool demonstrated adaptability to different drive cycles and the ability to modify motor performance without affecting operational parameters. Thus validating the capability of the design tool to capture cross-scalar and intra-subsystem interaction effects. To examine inter-subsystem interaction, a thermal model of an inverter was developed, capturing temperature variations in the power electronics based on motor inputs. The design tool successfully captured interaction effects between motor and inverter designs, highlighting the interplay with operational parameters.

Thus, this thesis identifies methods for interaction analysis and develops robust subsystem models. The integrated design tool effectively captures intra-subsystem, inter-subsystem, and cross-scalar interaction effects. The research presented contributes to the overarching project goal of developing methods and models that capture interaction effects and in turn serve as a guiding tool for designers to understand the consequences of their design choices.

Abstract [sv]

Det konventionella tillvägagångssättet för fordonsdesign är restriktiv, begränsat och partiskt. Detta leder ofta till en suboptimal användning av fordonets kapacitet och tilldelade resurser och innebär i slutändan att konsekvenserna blir att använda ett ineffektivt fordon. För att övervinna dessa begränsningar är det viktigt att få en djupare förståelse för interaktionseffekterna på komponent-, delsystem- och systemsnivå. I denna avhandling fokuserar forskningen på att identifiera lämpliga metoder och utveckla robusta modeller för att underlätta interaktionsanalysen.

För att granska och identifiera lämpliga metoder utvecklades kriterier. Till att börja med undersöktes Design Structure Matrix (DSM) och dess variationer. Medan DSM visade sig vara grundläggande för att fånga interaktionseffekter, saknade den förmågan att besvara frågor om interaktionsstrukturer och beteende samt förutsäga oavsiktliga effekter. Därför utforskades nätverksteori som en kompletterande metod till DSM, vilket kunde ge insikter i interaktionsstrukturer och identifiera inflytelserika variabler.

Därefter etablerades två kriterier för att identifiera delsystem som är betydelsefulla för interaktionsanalysen: hög anslutning till andra delsystem och mångdisciplinär sammansättning. Dragkraftmotorn observerades uppfylla båda kriterierna eftersom den hade högre anslutning till andra delsystem och var sammansatt av flera discipliner. Därför utvecklades en detaljerad modell av en induktionsmotor för att möjliggöra interaktionsanalysen.

Induktionsmotormodellen integrerades i ett tvärskaligt designverktyg. Verktyget använde en tvåstegsprocess: att översätta operativa parametrar till motorinsatser med hjälp av Newtons ekvationer och härleda fysiska egenskaper, prestandakaraktäristik och prestandaattribut hos motorn. Jämförelse av den erhållna prestandakaraktäristikkurvan med befintliga studier validerade modellens tillförlitlighet och förmågor. Designverktyget visade anpassningsbarhet till olika körcykler och förmågan att modifiera motorprestanda utan att påverka operativa parametrar. Detta validerade designverktygets förmåga att fånga tvärskaliga och intra-subsystem interaktionseffekter. För att undersöka inter-subsysteminteraktion utvecklades en termisk modell av en inverter, som fångade temperaturvariationer i kraftelektroniken baserat på motorns styrning. Designverktyget fångade framgångsrikt interaktionseffekter mellan motor- och inverterdesign och belyste samspelet med operativa parametrar.

Därmed identifierar denna avhandling metoder för interaktionsanalys och utvecklar robusta delsystemmodeller. Det integrerade designverktyget fångar effektivt intra-subsystem-, inter-subsystem- och tvärskaliga interaktionseffekter. Den presenterade forskningen bidrar till det övergripande projektets mål att utveckla metoder och modeller som fångar interaktionseffekter och i sin tur fungerar som ett vägledande verktyg för designers att förstå konsekvenserna av sina designval.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 77
Series
TRITA-SCI-FOU ; 2023:51
Keywords
Subsystem interaction, Interaction effects, Design Structure Matrix, Network theory, Cross-scalar design tool, Induction motor, Inverter.
National Category
Vehicle and Aerospace Engineering
Research subject
Vehicle and Maritime Engineering
Identifiers
urn:nbn:se:kth:diva-337391 (URN)978-91-8040-717-5 (ISBN)
Presentation
2023-10-24, Hugin, Teknikringen 8, Stockholm, 10:00 (English)
Supervisors
Note

QC 231003

Available from: 2023-10-03 Created: 2023-10-02 Last updated: 2025-02-14Bibliographically approved

Open Access in DiVA

math_model_motor_vehicle(724 kB)196 downloads
File information
File name FULLTEXT01.pdfFile size 724 kBChecksum SHA-512
226a93ff1202623f4d934db84b2241a6ed04c6d79f03353ae9ae6ed4c5e85a16abf7ee4e333aad26e42f9f4954ee0fd47f39e4e3d8dabbbd172b65c19dc480e5
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Abburu, Sai KausikCasanueva, CarlosO'Reilly, Ciarán J.

Search in DiVA

By author/editor
Abburu, Sai KausikCasanueva, CarlosO'Reilly, Ciarán J.
By organisation
VinnExcellence Center for ECO2 Vehicle designVehicle Engineering and Solid Mechanics
Vehicle and Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 197 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 608 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf