Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Titanium germanium carbide MAX phase electrocatalysts for supercapacitors and alkaline water electrolysis processes
Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.ORCID-id: 0000-0002-6282-9004
Vise andre og tillknytning
2023 (engelsk)Inngår i: Materials Today Chemistry, E-ISSN 2468-5194, Vol. 33, artikkel-id 101714Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Developing electrochemically active, stable, and low-cost electrocatalysts for electrochemical devices is a significant breakthrough. Accordingly, MAX phases, emerging three-dimensional materials, are considered outstanding candidates due to their excellent electrocatalytic and electrochemical properties. Herein, the titanium germanium carbide (Ti3GeC2) MAX phase with a layered structure manufactured through reactive sintering was regarded as the electrocatalyst. In the current work, the electrocatalytic activity of the Ti3GeC2 was investigated for electrochemical devices. It was observed that adding activated carbon to the Ti3GeC2 enhances the conductivity and active area, leading to an excellent specific capacitance (349 Fg-1) for supercapacitors. Also, the capacitance of Ti3GeC2 was increased by increasing the number of cyclic voltammetry cycles. In another application, Ti3GeC2 showed substantial activity for hydrogen and oxygen evolution reactions in alkaline media. As a result, the alkaline water electrolysis system using Ti3GeC2 showed the highest current density of 10 mA cm−2 at 1.36 V and outstanding stability over 400 cycles.

sted, utgiver, år, opplag, sider
Elsevier BV , 2023. Vol. 33, artikkel-id 101714
Emneord [en]
MAX phase, Multifunctional materials, Supercapacitor, Titanium germanium carbide, Water electrolysis
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-337442DOI: 10.1016/j.mtchem.2023.101714ISI: 001080312700001Scopus ID: 2-s2.0-85171451141OAI: oai:DiVA.org:kth-337442DiVA, id: diva2:1802991
Merknad

QC 20231006

Tilgjengelig fra: 2023-10-06 Laget: 2023-10-06 Sist oppdatert: 2024-02-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

khataee, Amirreza

Søk i DiVA

Av forfatter/redaktør
khataee, Amirreza
Av organisasjonen
I samme tidsskrift
Materials Today Chemistry

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 42 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf