Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimating electric power consumption of in-situ residential heat pump systems: A data-driven approach
KTH, Skolan för industriell teknik och management (ITM), Energiteknik.ORCID-id: 0000-0002-1187-7065
KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Tillämpad termodynamik och kylteknik.ORCID-id: 0000-0003-4387-806x
Sustainable Thermal Energy Systems, AIT Austrian Institute of Technology, Giefinggasse 2, A-1210 Vienna, Austria.
Vise andre og tillknytning
2023 (engelsk)Inngår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 352, artikkel-id 121971Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

International Energy Agency predicts that the global number of installed heat pumps (HP) will increase from 180 million in 2020 to approximately 600 million by 2030, covering 20% of buildings heating needs. Electric power consumption is one of the main key performance indicators for the heat pump systems from techno-economic perspective. However a common issue prevalent in many existing heat pumps is the lack of electric power measurement. The modern installations might be equipped with electric power measurement sensors but this comes at a higher system cost for the manufacturers and end-users. The primary objective of this work is to propose a virtual measurement for estimating power consumption, thereby eliminating the need for field measurement of power for heat pumps. To achieve the objective, a data-driven approach is proposed. Firstly, the in-situ data is preprocessed through data merging, cleaning, and normalization. Then, input features are pre-selected using Spearman correlation coefficients, and further refined by addressing multicollinearity problem. Following this, Extreme Gradient Boosting (XGBoost) models and polynomial models are developed by considering different features as inputs. All models are finally validated against the in-situ data from multi-units of ground source heat pump (GSHP) and air source heat pump (ASHP) installations. The results showed that the electric power consumption of GSHP can be estimated with high accuracy (99% for R2, 10 W for MAE, and 1% for MAPE) through generic data-driven models using only four easy-to-measure input features. Taking three input features as inputs for ASHP generic model, the accuracy can be reached to 83% for R2, 125 W for MAE, and 9% for MAPE. The method presented in this paper can be applied to estimate power consumption of millions of heat pumps and consequently add a significant value as well as provide different types of services, such as cost-saving benefits for manufacturers and end-users, flexibility services for aggregators and electricity grids.

sted, utgiver, år, opplag, sider
Elsevier BV , 2023. Vol. 352, artikkel-id 121971
Emneord [en]
Data driven, Electric power, Heat pump, Heating, Machine learning, Regression model
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-338357DOI: 10.1016/j.apenergy.2023.121971ISI: 001086100200001Scopus ID: 2-s2.0-85172678028OAI: oai:DiVA.org:kth-338357DiVA, id: diva2:1806259
Merknad

QC 20231115

Tilgjengelig fra: 2023-10-20 Laget: 2023-10-20 Sist oppdatert: 2023-11-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Song, YangPeskova, MonikaRolando, DavideMadani Larijani, Hatef

Søk i DiVA

Av forfatter/redaktør
Song, YangPeskova, MonikaRolando, DavideMadani Larijani, Hatef
Av organisasjonen
I samme tidsskrift
Applied Energy

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 84 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf