kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Defense of Cyber-Physical Systems Against Learning-based Attackers
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).ORCID iD: 0000-0001-6558-3807
2023 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

Cyberattacks against critical infrastructures pose a serious threat to society, as they can have devastating consequences on the economy, security, or public health. These infrastructures rely on a large network of cyber components, such as sensors, controllers, computers, and communication devices, to monitor and control their physical processes. An adversary can exploit the vulnerabilities in these cyber components to gain access to the system and manipulate its behavior or functionality.

This thesis proposes methods that can be employed as a first line of defense against such attacks for Cyber-Physical Systems. In the first part of the thesis, we consider how uninformed attackers can learn to attack a Cyber-Physical System by eavesdropping through the cyber component. By learning to manipulate the plant, the attacker could figure out how to destroy the physical system before it is too late or completely take it over without raising any alarms. Stopping the attacker at the learning stage would force the attacker to act obliviously, increasing the chances of detecting them.

We analyze how homomorphic encryption, a technique that allows computation on encrypted data, hinders an attacker's learning process and reduces its capabilities to attack the system. Specifically, we show that an attacker must solve challenging lattice problems to find attacks that are difficult to detect. Additionally, we show how the detection probability is affected by the attacker's solution to the problems and what parameters of the encryption scheme can be tweaked to increase the detection probability. We also develop a novel method that enables anomaly detection over homomorphically encrypted data without revealing the actual signals to the detector, thereby discouraging attackers from launching attacks on the detector. The detection can be performed using a hypothesis test. However, special care must be taken to ensure that fresh samples are used to detect changes from nominal behavior. We also explore how the adversary can try to evade detection using the same test and how the system can be designed to make detection easier for the defender and more challenging for the attacker.

In the second part of the thesis, we study how information leakage about changes in the system depends on the system's dynamics. We use a mathematical tool called the Hammersley-Chapman-Robbins lower bound to measure how much information is leaked and how to minimize it. Specifically, we study how structured input sequences, which we call events, can be obtained through the output of a dynamical system and how this information can be hidden by adding noise or changing the inputs. The system’s speed and sensor locations affect how much information is leaked. We also consider balancing the system’s performance and privacy when using optimal control. Finally, we show how to estimate when the adversary’s knowledge of the event becomes accurate enough to launch an attack and how to change the system before that happens. These results are then used to aid the operator in detecting privacy vulnerabilities when designing a Cyber-Physical System, which increases the overall security when removed.

Abstract [sv]

Cyberattacker mot kritisk infrastruktur utgör ett allvarligt hot mot samhället, eftersom de kan få förödande konsekvenser för ekonomin, säkerheten eller folkhälsan. Dessa infrastrukturer utgörs ofta av ett stort nätverk av cyberkomponenter, såsom sensorer, styrenheter, datorer och kommunikationsenheter, för att övervaka och styra sina fysiska processer. En angripare kan utnyttja sårbarheterna i dessa cyberkomponenter för att få tillgång till systemet och därefter manipulera dess beteende eller funktionalitet.

Denna avhandling behandlar och föreslår metoder som kan användas som en första försvarslinje mot sådana attacker för cyberfysiska system. I den första delen av avhandlingen undersöker vi hur oinformerade angripare kan lära sig att attackera ett cyberfysiskt system genom att avlyssna dem via cyberkomponenten. Genom att lära sig att manipulera det fysiska systemet kan angriparen ta reda på hur man kan förstöra, eller helt ta över det cyberfysiska systemet utan att något alarm går av förrän det är försent. Genom att stoppa angriparen i inlärningsfasen tvingas angriparen att agera mer omedvetet, vilket ökar chanserna att upptäcka dem.

Vi analyserar hur homomorf kryptering, vilket är en krypteringsmetod som möjliggör beräkning med krypterad data, hindrar angriparens inlärnings-process och minskar dess förmåga att attackera systemet. Specifikt visar vi att en angripare måste lösa svåra gitterproblem för att hitta svårdetekterade cyberattacker. Dessutom visar vi hur detektionssannolikheten påverkas av hur bra angriparens lösning är och vilka parametrar i krypteringsschemat som kan justeras för att öka sannolikheten att upptäcka anfallet. Vi utvecklar också en ny metod som möjliggör anomalidetektering över homomorft krypterade data, utan att avslöja de faktiska signalerna för detektorn och därmed avskräcka angripare från att attackera detektorn. Detektionen kan utföras med hjälp av ett hypotestest. Dock måste man se till att färska prover används för att upptäcka förändringar från normalt beteende. Vi undersöker också hur angriparen kan försöka undvika detektion genom att använda samma test, och hur systemet kan utformas för att göra detektionen enklare för försvararen och svårare för angriparen.

I den andra delen av avhandlingen studerar vi hur informationsläckage om förändringar i systemet beror på dess dynamik. Vi använder ett matematiskt verktyg som kallas Hammersley-Chapman-Robbins undre gräns för att mäta hur mycket information som läcker ut och hur man minimerar den. Specifikt studerar vi hur strukturerade insignalssekvenser, som vi kallar händelser, kan uppskattas genom mätningar från ett dynamiskt system och hur denna information kan döljas genom att lägga till brus eller ändra insignalerna. Systemets hastighet och sensorplaceringar påverkar hur mycket information läcker ut. Vi behandlar också frågan om hur man balanserar systemets prestanda och integritet när vi använder optimal styrning. Slutligen visar vi hur man uppskattar när angriparens kunskap om händelsen blir tillräckligt noggrann för att starta en attack och hur man ändrar systemet innan det händer. Dessa resultat används sedan för att hjälpa operatören att upptäcka integritetsbrister vid utformningen av ett cyberfysiskt system, vilket ökar den totala säkerheten när de tas bort.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 267
Series
TRITA-EECS-AVL ; 2023:72
Keywords [en]
Control Theory, Security, Privacy, Machine Learning, Cyber-Physical Systems, Change Point Problems
National Category
Control Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-338318ISBN: 978-91-8040-729-8 (print)OAI: oai:DiVA.org:kth-338318DiVA, id: diva2:1806326
Public defence
2023-11-10, Kollegiesalen, Brinellvägen 6, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, RIT17-0046
Note

QC 20231020

Available from: 2023-10-20 Created: 2023-10-20 Last updated: 2023-10-26Bibliographically approved

Open Access in DiVA

RijadAlisicThesis(50879 kB)344 downloads
File information
File name FULLTEXT01.pdfFile size 50879 kBChecksum SHA-512
a68f250a5b576c5e688ff61f794495866e4ca4a2ce4f20c35c3ccab42001bf6aaf6c75fa3a78bd5402b7f95e3b4edb23bd6f2222086099de8c95a7361b226c26
Type fulltextMimetype application/pdf

Authority records

Alisic, Rijad

Search in DiVA

By author/editor
Alisic, Rijad
By organisation
Decision and Control Systems (Automatic Control)
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 345 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1424 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf