kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Lignin nanoparticles as co-stabilizers and modifiers of nanocellulose-based Pickering emulsions and foams
Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland; VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044, Espoo, Finland.
Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland.
Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland; Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076, Aalto, Finland.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.ORCID iD: 0000-0002-2984-7702
Show others and affiliations
2023 (English)In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 30, no 14, p. 8955-8971Article in journal (Refereed) Published
Abstract [en]

Nanocellulose is very hydrophilic, preventing interactions with the oil phase in Pickering emulsions. This limitation is herein addressed by incorporating lignin nanoparticles (LNPs) as co-stabilizers of nanocellulose-based Pickering emulsions. LNP addition decreases the oil droplet size and slows creaming at pH 5 and 8 and with increasing LNP content. Emulsification at pH 3 and LNP cationization lead to droplet flocculation and rapid creaming. LNP application for emulsification, prior or simultaneously with nanocellulose, favors stability given the improved interactions with the oil phase. The Pickering emulsions can be freeze–dried, enabling the recovery of a solid macroporous foam that can act as adsorbent for pharmaceutical pollutants. Overall, the properties of nanocellulose-based Pickering emulsions and foams can be tailored by LNP addition. This strategy offers a unique, green approach to stabilize biphasic systems using bio-based nanomaterials without tedious and costly modification procedures.

Place, publisher, year, edition, pages
Springer Nature , 2023. Vol. 30, no 14, p. 8955-8971
Keywords [en]
Adsorption, Foams, Lignin nanoparticles, Nanocellulose, Pharmaceutical pollutants, Pickering emulsions
National Category
Physical Chemistry Food Science
Identifiers
URN: urn:nbn:se:kth:diva-338522DOI: 10.1007/s10570-023-05399-yISI: 001039335000001PubMedID: 37736116Scopus ID: 2-s2.0-85166190884OAI: oai:DiVA.org:kth-338522DiVA, id: diva2:1811846
Note

QC 20231114

Available from: 2023-11-14 Created: 2023-11-14 Last updated: 2024-02-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Oliaei, Erfan

Search in DiVA

By author/editor
Oliaei, Erfan
By organisation
Wallenberg Wood Science CenterBiocomposites
In the same journal
Cellulose
Physical ChemistryFood Science

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf