kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Topology optimization of transitional flows
KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
2023 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Topologioptimering av strömning med omslag till turbulens (Swedish)
Abstract [en]

This thesis is concerned with the application of topology optimization in thedesign of structures that control fluids. A framework is developed in the high-order Spectral Element Method (SEM) code Nek5000, extending Nek5000 fromits original capabilities, performing Direct Numerical Simulations (DNS), toperforming density-based topology optimization. The optimization processemploys the adjoint-variable method for gradient computations and, at times, acheckpointing strategy to reduce data storage requirements.

The applicability of the SEM for topology optimization is assessed in2D, successfully applying the methodology to design a channel bend and anoscillating pump, and demonstrating strong agreement with body-fitted meshes. A nonlinear filtering strategy was used to enforce a minimum length scale andfound to be a necessary regularization constraint for meaningful pump designs.

Moving attention to laminar–turbulent transition, the framework is used tooptimize spanwise arrays of roughness elements that generate steady streaks inboundary layers to attenuate the growth of Tollmien-Schlichting (TS) waves.The optimized designs significantly dampen downstream TS wave amplitudecompared to a reference Miniature Vortex Generator (MVG) of similar size. Energy budget and local stability analyses are conducted to study the optimizeddesigns and the streaky baseflows they induce.

Topology optimization was used to design the macroscopic layout of Super-Hydrophobic Surfaces (SHSs) in channels to delay subcritical K-type transition. In a temporal setting, the optimized designs inhibit the growth of secondaryinstability modes. This methodology was extended to optimizing over anensemble of initial perturbations. In a spatial setting, the optimized surfacesexhibited an asymmetry in design between the top and bottom surfaces, breakingthe classical K-type symmetry. While this breaking of the symmetry was foundto be beneficial, the major contributing factor to the delay in transition was,again, the inhibition of the growth of secondary instability modes.

This framework was also applied to conjugate heat transfer problems. The thermal performance of a heat sink in a differentially heated cavity was alsoimproved by the application of topology optimization.

Abstract [sv]

Avhandlingen behandlar topologioptimering av strukturer i syfte att påverkavätske- och luftströmmingar. Ett ramverk har utvecklats i programvaran Nek5000,som numeriskt löser Navier–Stokes ekvationer med hjälp av en högre ordningensspektralelementmetod (SEM). Ramverket utökar Nek5000 ursprungliga kapa-citet så att densitetsbaserad topologioptimering kan utföras inom ramen fördirekta numeriska simuleringar (DNS).

Användingen av SEM för topologioptimering utvärderades först i två di-mensioner med en framgångsrik tillämpning av metodiken för utformning aven oscillerande pump. Resultatet verifierades genom beräkningar med kropps-anpassade nät. En icke-linjär filtreringsstrategi användes för att upprätthållaen minimalängdskala på den optimerade geometrin, en strategi som visade sigvara nödvändig för att erhålla meningsfulla pumpkonstruktioner.

Programvaran användes sedan för att optimera uppsättningar av ytstruk-turer som genererar s.k. stråk i laminära gränsskikt. Syftet med optimeringenvar att dämpa tillväxten av Tollmien–Schlichting- (TS) vågor. De optimeradestrukturerna dämpar TS-vågamplituden avsevärt bättre än tidigare användaminiatyrvirvelgeneratorer. De optimerade strukturerna och de nya basflöden deinducerar studerdes med energibudget- och lokala stabilitetsanalys.

Topologioptimering användes också för makroskopisk utformning av super-hydrofobiska ytor i kanalströmning i syfte att fördröja laminärt till turbulentomslag. Först betraktades en liten periodisk domän, och resultaten indikeraratt de optimerade ytorna minskar tillväxten av de sekundärinstabiliteter somorsakar omslag till turbulens. Sedan utökades domänen till att studera spa-tiellt utvecklande strömning. Där visar de optimerade ytorna en strukturellasymmetri mellan topp- och bottenytor, vilket bryter den klassiska symme-trin i omslag av s.k. K-typ. Även om detta symmetribrott visade sig varafördelaktigt, är den huvudsakliga orsaken till fördröjningen av omslaget återigenen tillväxtsbegränsning av den sekundära instabiliteten.

Det utvecklade Nek5000-ramverket användes också för att optimera värme-överföringsproblem. Den termiska prestandan av en kylfläns i en differentielltuppvärmd kavitet förbättrades genom att utforma kylflänsen med användandeav topologioptimering.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 35
Series
TRITA-SCI-FOU ; 2023:57
Keywords [en]
Direct Numerical Simulation, Topology Optimization, Laminar– Turbulent Transition, Spectral Element Method
Keywords [sv]
Direkt numerisk simulering, topologioptimering, laminär–turbulent omslag, spektralelementmetod
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-340054ISBN: 978-91-8040-773-1 (print)OAI: oai:DiVA.org:kth-340054DiVA, id: diva2:1814572
Public defence
2023-12-15, E3, Osquars backe 14, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2023-11-27 Created: 2023-11-25 Last updated: 2025-02-09Bibliographically approved
List of papers
1. Topology optimization of unsteady flows using the spectral element method
Open this publication in new window or tab >>Topology optimization of unsteady flows using the spectral element method
Show others...
2022 (English)In: Computers & Fluids, ISSN 0045-7930, E-ISSN 1879-0747, Vol. 239, p. 105387-, article id 105387Article in journal (Refereed) Published
Abstract [en]

We investigate the applicability of a high-order Spectral Element Method (SEM) to density based topology optimization of unsteady flows in two dimensions. Direct Numerical Simulations (DNS) are conducted relying on Brinkman penalization to describe the presence of solid within the domain. The optimization procedure uses the adjoint-variable method to compute gradients and a checkpointing strategy to reduce storage requirements. A nonlinear filtering strategy is used to both enforce a minimum length scale and to provide smoothing across the fluid-solid interface, preventing Gibbs oscillations. This method has been successfully applied to the design of a channel bend and an oscillating pump, and demonstrates good agreement with body fitted meshes. The precise design of the pump is shown to depend on the initial material distribution. However, the underlying topology and pumping mechanism is the same. The effect of a minimum length scale has been studied, revealing it to be a necessary regularization constraint for the oscillating pump to produce meaningful designs. The combination of SEM and density based optimization offer some unique challenges which are addressed and discussed, namely a lack of explicit boundary tracking exacerbated by the interface smoothing. Nevertheless, SEM can achieve equivalent levels of precision to traditional finite element methods, while requiring fewer degrees of freedom. Hence, the use of SEM addresses the two major bottlenecks associated with optimizing unsteady flows: computation cost and data storage.

Place, publisher, year, edition, pages
Elsevier BV, 2022
Keywords
Topology optimization, Spectral element method, Unsteady, Direct numerical simulations, Length scale control, Non-linear filtering
National Category
Fluid Mechanics
Identifiers
urn:nbn:se:kth:diva-312979 (URN)10.1016/j.compfluid.2022.105387 (DOI)000793263500001 ()2-s2.0-85126644608 (Scopus ID)
Note

QC 20220530

Available from: 2022-05-30 Created: 2022-05-30 Last updated: 2025-02-09Bibliographically approved
2. Topology Optimization of Roughness Elements to Delay Modal Transition in Boundary Layers
Open this publication in new window or tab >>Topology Optimization of Roughness Elements to Delay Modal Transition in Boundary Layers
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Fluid Mechanics
Identifiers
urn:nbn:se:kth:diva-340052 (URN)
Funder
eSSENCE - An eScience CollaborationSwedish Research Council, 2019- 04339Swedish Research Council, 2016-06119Swedish National Infrastructure for Computing (SNIC)
Note

QC 20231127

Available from: 2023-11-25 Created: 2023-11-25 Last updated: 2025-02-09Bibliographically approved
3. Modal laminar-turbulent transition delay by means of topology optimization of superhydrophobic surfaces
Open this publication in new window or tab >>Modal laminar-turbulent transition delay by means of topology optimization of superhydrophobic surfaces
Show others...
2023 (English)In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 403, article id 115721Article in journal (Refereed) Published
Abstract [en]

When submerged under a liquid, the microstructure of a SuperHydrophobic Surface (SHS) traps a lubricating layer of gas pockets, which has been seen to reduce the skin friction of the overlying liquid flow in both laminar and turbulent regimes. More recently, spatially homogeneous SHS have also been shown to delay laminar-turbulent transition in channel flows, where transition is triggered by modal mechanisms. In this study, we investigate, by means of topology optimization, whether a spatially inhomogeneous SHS can be designed to further delay transition in channel flows. Unsteady direct numerical simulations are conducted using the spectral element method in a 3D periodic wall-bounded channel. The effect of the SHS is modelled using a partial slip length on the walls, forming a 2D periodic optimization domain. Following a density-based approach, the optimization procedure uses the adjoint-variable method to compute gradients and a checkpointing strategy to reduce storage requirements. This methodology is adapted to optimizing over an ensemble of initial perturbations.This study presents the first application of topology optimization to laminar-turbulent transition. We show that this method can design surfaces that delay transition significantly compared to a homogeneous counterpart, by inhibiting the growth of secondary instability modes. By optimizing over an ensemble of streamwise phase-shifted perturbations, designs have been found with comparable mean transition time and lower variance.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Topology optimization, Spectral element method, Laminar-turbulent transition, Direct numerical simulations, Channel flow, Super-hydrophobic surfaces
National Category
Mechanical Engineering
Identifiers
urn:nbn:se:kth:diva-323419 (URN)10.1016/j.cma.2022.115721 (DOI)000906896000009 ()2-s2.0-85141501653 (Scopus ID)
Note

QC 20230201

Available from: 2023-02-01 Created: 2023-02-01 Last updated: 2023-11-25Bibliographically approved
4. Topology optimization of Superhydrophobic Surfaces to delay spatially developing modal laminar–turbulent transition
Open this publication in new window or tab >>Topology optimization of Superhydrophobic Surfaces to delay spatially developing modal laminar–turbulent transition
Show others...
2023 (English)In: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 104, article id 109231Article in journal (Refereed) Published
Abstract [en]

Super-Hydrophobic Surfaces (SHSs) have been shown to reduce skin friction of an overlying fluid as a consequence of gas pockets trapped within the surface's microstructure. More recently, they have also been shown capable of delaying laminar–turbulent transition. This article investigates the applicability of topology optimization in designing the macroscopic layout of SHSs in a channel that are able to further delay K-type transition in a spatial setting. Unsteady direct numerical simulations are performed to simulate the transition scenario. This is coupled with adjoint–based sensitivity analysis and gradient based optimization. The optimized designs found through this procedure are capable of moving the transition location further downstream compared to a homogeneous counterpart by inhibiting the growth of secondary instability modes. This article provides the first application of topology optimization to a spatially developing transition scenario.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Direct numerical simulations, Laminar–turbulent transition, Superhydrophobic Surfaces, Topology optimization
National Category
Fluid Mechanics
Identifiers
urn:nbn:se:kth:diva-340051 (URN)10.1016/j.ijheatfluidflow.2023.109231 (DOI)001112400900001 ()2-s2.0-85177193679 (Scopus ID)
Funder
Swedish Research Council, 2019-04339
Note

QC 20231215

Available from: 2023-11-25 Created: 2023-11-25 Last updated: 2025-02-09Bibliographically approved
5. Heat Transfer Maximization in a Three Dimensional Conductive Diferentially Heated Cavity by Means of Topology Optimization
Open this publication in new window or tab >>Heat Transfer Maximization in a Three Dimensional Conductive Diferentially Heated Cavity by Means of Topology Optimization
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Fluid Mechanics
Identifiers
urn:nbn:se:kth:diva-340053 (URN)
Funder
Swedish Research Council, 2019- 04339Swedish Research Council, 2016-06119Swedish National Infrastructure for Computing (SNIC)eSSENCE - An eScience Collaboration
Note

QC 20231127

Available from: 2023-11-25 Created: 2023-11-25 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

summary(6385 kB)247 downloads
File information
File name SUMMARY01.pdfFile size 6385 kBChecksum SHA-512
941c70871d633ad804b883fa2213423137e6cfb136900df7a558dc54f066a94acc2d329961f43560021c681b3d55c0c4e9379e1c2928730c7dd235abce2e287f
Type summaryMimetype application/pdf

Search in DiVA

By author/editor
Nobis, Harrison
By organisation
Engineering Mechanics
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1508 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf