kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Computational Aeroacoustics for a Cold, Non-Ideally Expanded Aerospike Nozzle
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0001-7330-6965
2023 (English)In: Proceedings of ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023, American Society of Mechanical Engineers (ASME) , 2023, article id v13ct33a004Conference paper, Published paper (Refereed)
Abstract [en]

In supersonic aerospace applications, aerospike nozzles have been subject of growing interest. These devices lead to enhanced thrust performance compared to conventional nozzles due to continuous altitude adaption and improved thrust vector control. However, supersonic non-ideally expanded jets are known to generate high levels of noise. The aeroacoustic behaviour of circular and rectangular nozzles has been largely discussed whereas data on the aeroacoustic behaviour of aerospike nozzles is scarce. For further industrial development, the identification of the noise generation mechanisms in such configurations is necessary. This study sheds light on the main noise components of a cold jet exhausting an aerospike nozzle. Implicit Large Eddy Simulations (ILES) are deployed to simulate the flow of the cold aerospike at a Nozzle Pressure Ratio (NPR) = 3. For far-field acoustic computation, the Ffowcs-Williams Hawkings (FWH) equation is applied. A mesh sensitivity study is first performed. Then, the configuration is analyzed in terms of near-field instantaneous and time-averaged flow characteristics. It is of crucial interest to characterize the features of the shock-cell structures. The annular shock structure near the aerospike bluff body displays two non-attached shock-cells of length L/Dj ∼ 0.43. The annular jet is then reattaching and this reattachment leads to longer shock-cells of length L/Dj ∼ 0.77. Downstream of the bluff body, a second expansion process takes place and leads to the emergence of a circular shock-cell structure with a first shock-cell length of L/Dj ∼ 1.20. The interaction between the vortical flow structures in the shear layers and the shocks generates Broadband Shock-Associated Noise (BBSAN). In order to enhance understanding of the noise generation mechanism for this configuration, several analyses are performed. Two-point cross-correlations of data acquired in monitoring points located along axial lines in the circular shear layers are used for quantifying the upstream propagating waves associated to a strong tonal component at a Strouhal number St = 0.51. This strong tonal component is known as screech. It is generated by a feedback mechanism between the coherent fluid flow structures propagating downstream in the jet shear layer and the upstream propagating acoustic waves generated at the same frequency by vortex-shock interactions, waves that are interacting with the nozzle lip and excite shear layer instabilities at the frequency of screech. Power spectral density of the radial velocity at monitoring points in the annular jet structure displays three main peaks at St = 0.68, St = 1.21 and St = 2.59. These frequencies correspond to the oscillation modes of the annular shock-cell structure in radial direction. Furthermore, a vortex sheet model is adapted to predict the length of the annular shock-cells. A good agreement is reached between the analytically derived shock-cell length and the simulation results. The shock-cell length is used to predict the central frequency of BBSAN as a function of observation angles. The far-field spectra show mixing noise as well as Broadband Shock-Associated Noise, related to the interaction between the convected vortices in the shear layers and the shock-cell structure. High sound pressure levels (SPL) are detected in agreement with the BBSAN central frequencies which were computed using the annular and circular shock-cell length. Finally, high SPL are obtained at the radial oscillation frequencies for the annular shock-cell structure.

Place, publisher, year, edition, pages
American Society of Mechanical Engineers (ASME) , 2023. article id v13ct33a004
Keywords [en]
acoustic analogy, aeroacoustics, aerospike nozzle, Ffowcs Williams-Hawkings, Large eddy simulation, supersonic jet noise
National Category
Fluid Mechanics and Acoustics Aerospace Engineering
Identifiers
URN: urn:nbn:se:kth:diva-340382DOI: 10.1115/GT2023-101947ISI: 001214818300057Scopus ID: 2-s2.0-85177171478OAI: oai:DiVA.org:kth-340382DiVA, id: diva2:1816807
Conference
ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023, Boston, United States of America, Jun 26 2023 - Jun 30 2023
Note

Part of ISBN 9780791887103

QC 20231204

Available from: 2023-12-04 Created: 2023-12-04 Last updated: 2024-06-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Golliard, ThomasMihaescu, Mihai

Search in DiVA

By author/editor
Golliard, ThomasMihaescu, Mihai
By organisation
Fluid Mechanics and Engineering AcousticsLinné Flow Center, FLOW
Fluid Mechanics and AcousticsAerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 40 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf