kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microstructural Decay in High-Strength Bearing Steels under Rolling Contact Fatigue
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Properties. Ovako.ORCID iD: 0000-0002-1015-202X
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The work presented in this thesis aims to enhance our understanding of material decay in high-strength steels used for bearing applications. The primary objective is to investigate the microstructural changes in two high-strength steels: 52100 steels, a popular bearing steel, and Hybrid 60, a relatively new bearing steel designed for long fatigue life and use at elevated temperatures. In addition, the investigations were also carried out on a low-carbon low-alloy steel (Hardox 400). The evolution of the microstructure of these materials under rolling contact fatigue (RCF) conditions was investigated in detail.

The results revealed distinct microstructural alterations in the region of maximum shear stress beneath the raceway surface, observed in all three steels under investigation. These alterations include the presence of ferrite microbands, dissolution of carbides and precipitates, and the formation of nano-ferrite grains. The decayed regions exhibit differences in mechanical properties compared to the virgin material. In all materials, the presence of both ferrite microbands and nano-ferrite is associated with the rearrangement of dislocations into low-energy configurations, induced by stress-induced cyclic flow during RCF.

Hybrid 60 exhibits a lower area fraction of material decay after the same number of stress cycles (\(1.0 \times 10^8\)) compared to 52100 steel and Hardox 400. This difference can be ascribed to the highly effective dislocation pinning provided by the precipitates and their thermodynamic stability in Hybrid 60, which reduce the likelihood of the formation of dislocation substructure in the stressed region, thereby enhancing its resistance to softening.In contrast to 52100 and Hardox steel where cementite precipitates and  \(\varepsilon\)-Fe\(_2\)C carbides are present, the carbon content in 52100 steel plays a more significant role in influencing the dislocation movement under cyclic loading. A higher carbon content results in enhanced solid solution hardening and improved resistance to RCF in 52100 steel. The high carbon content in 52100 steel makes it harder for dislocations to move under the applied cyclic load, increasing resistance to deformation and microstructural change during RCF compared to Hardox 400. 

In the case of Hybrid 60 steel, dislocation movement is constrained by the formation of secondary carbides and NiAl intermetallic precipitates. The material's resistance to the formation of dislocation cells and ferrite bands is intricately linked to its ability to withstand the dissolution of precipitates through dislocation shearing. These findings highlight the crucial role of alloy carbides in preventing material deterioration. Despite lower levels of interstitial carbon, the alloyed steel (Hybrid 60) exhibits enhanced durability when subject to RCF in comparison with 52100 steel.

Abstract [sv]

Arbetet presenterat i denna avhandling syftar till att öka förståelsen för materialdegradering i höghållfasta stål använda för lagerapplikationer. Det primära målet är att undersöka mikrostrukturella förändringar i två höghållfasta stål: 52100-stål, ett populärt lagerstål, och Hybrid 60, ett relativt nytt lagerstål designat för lång livslängd vid utmattning och användning vid förhöjda temperaturer. Dessutom utfördes undersökningar även på ett lågkoligt låglegerat stål (Hardox 400). Materialets beteende under experiment med rullande kontaktutmattning (RCF) undersöks.

Resultaten avslöjar tydliga mikrostrukturella förändringar i området med maximal skjuvspänning under loppets yta, observerade i alla tre stålsorter under undersökningen. Dessa förändringar inkluderar närvaron av ferritmikrobånd, upplösning av karbider och utfällningar samt bildandet av nano-ferritkorn. De degraderade områdena uppvisar skillnader i mekaniska egenskaper jämfört med det orörda materialet. I samtliga material är närvaron av både ferritmikrobånd och nano-ferrit kopplad till omarrangeringen av dislokationer i lågenergi konfigurationer, inducerade av stressinducerad cyklisk deformation under RCF.Hybrid 60 uppvisar en lägre områdesfraktion av materialdegradering efter samma antal strescykler (\(1.0 \times 10^8\)) jämfört med 52100-stål och Hardox 400. Denna skillnad kan tillskrivas den högt effektiva dislokationspinnen som tillhandahålls av utfällningarna och deras termodynamiska stabilitet i Hybrid 60, vilket minskar sannolikheten för bildandet av dislokationssubstruktur i det belastade området och därmed ökar dess motståndskraft mot mjukning.I motsats till 52100 och Hardox-stål där cementitutfällningar och \(\varepsilon\)-Fe\(_2\)C-karbid är närvarande, spelar kolhalten i 52100-stål en mer betydande roll i påverkan av dislokationsrörelse under cyklisk belastning. En högre kolhalt resulterar i förbättrad lösninghärdning och förbättrad motståndskraft mot RCF i 52100-stål. Den höga kolhalten i 52100-stål gör det svårare för dislokationer att röra sig under den applicerade cykliska belastningen, vilket ökar motståndet mot deformation och mikrostrukturell förändring under RCF jämfört med Hardox 400.

I fallet med Hybrid 60-stål begränsas dislokationsrörelsen av bildandet av sekundära karbider och NiAl-intermetalliska utfällningar. Materialets motstånd mot bildandet av dislokationsceller och ferritmikroband är intimt kopplat till dess förmåga att motstå upplösningen av utfällningar genom dislokationsskärning. Dessa resultat belyser den avgörande rollen av legeringskarbider för att förhindra materialförsämring. Trots lägre nivåer av interstitiellt kol uppvisar legerat stål (Hybrid 60) förbättrad hållbarhet när det utsätts för RCF jämfört med 52100-stål.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. , p. 113
Series
TRITA-ITM-AVL ; 2024:3
Keywords [en]
Microstructural decay, microscopy, rolling contact fatigue, Hybrid 60 steel, Bearing steel, 52100, dislocations, ferrite microbands
Keywords [sv]
Mikrostrukturell nedbrytning, mikroskopi, rullande kontaktfatigue, Hybrid 60-stål, dislokationer
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-342136ISBN: 978-91-8040-799-1 (print)OAI: oai:DiVA.org:kth-342136DiVA, id: diva2:1827842
Public defence
2024-02-09, Kollegiesalen / https://kth-se.zoom.us/j/65525297472, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2024-01-18 Created: 2024-01-15 Last updated: 2024-02-07Bibliographically approved
List of papers
1. Refining the mechanistic understanding of microstructural decay during rolling contact fatigue in 52100 bearing steel tempered at high temperature
Open this publication in new window or tab >>Refining the mechanistic understanding of microstructural decay during rolling contact fatigue in 52100 bearing steel tempered at high temperature
2023 (English)In: Journal of Materials Science, ISSN 00222461, p. 1-20Article in journal (Refereed) Published
Abstract [en]

Subsurface rolling contact fatigue (RCF) failure occurs beneath heavily loaded hard contacts like gears, bearings, and cams. This study investigates microstructural decay beneath a RCF-tested surface in AISI/SAE 52100 bearing steel tempered at 240 ℃. RCF tests were conducted at 100 ℃ with a maximum Hertzian contact pressure of 4 GPa for four stress cycles. Microstructural characterization utilized scanning electron microscopy, electron backscatter diffraction, transmission Kikuchi diffraction, and transmission electron microscopy. Due to high tempering temperature, white etching bands (WEBs) were observed without preceding dark etching regions. The microstructural decay sequence involved: (1) formation of elongated ferrite and ferrite microbands, (2) complete dissolution of tempered carbides and partial dissolution of residual cementite, (3) formation of WEBs composed of nano-sized ferrite grains (100–300 nm) transformed from ferrite microbands, and (4) appearance of lenticular carbides. Within the WEBs, most nano-sized grains had high-angle grain boundaries, while the fraction of low-angle grain boundaries increased in later stages of RCF. Lenticular carbides formed alongside elongated ferrite and coalesced nano-sized ferritic grains.

Place, publisher, year, edition, pages
Springer, 2023
Keywords
Rolling contact fatigue, bearing steel, microstructure
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-342129 (URN)10.1007/s10853-023-09088-w (DOI)001103936400002 ()2-s2.0-85176581498 (Scopus ID)
Note

QC 20240115

Available from: 2024-01-14 Created: 2024-01-14 Last updated: 2024-01-15Bibliographically approved
2. A Study on the Damage Behavior of Hybrid 60 and 52100 Steel during Rolling Contact Fatigue
Open this publication in new window or tab >>A Study on the Damage Behavior of Hybrid 60 and 52100 Steel during Rolling Contact Fatigue
Show others...
2024 (English)In: Proceedings 1st ASTM Bearing and Transmission Steels Technology Symposium, ASTM International , 2024, p. 525-540Conference paper, Published paper (Refereed)
Abstract [en]

This study investigates and compares the evolution of subsurface hardness and microstructure of Hybrid 60 and 52100 steels under rolling contact fatigue (RCF) testing. Similar microstructural decay was identified for both Hybrid 60 and 52100 steel, evidenced by the formation of elongated ferrite and ferrite microbands during the first stage of the microstructural decay. Nano-sized ferrite grains were also observed in the region with maximum Hertzian stress after 1×108 stress cycles for both steels. In addition to the common microstructural decay in the two steels, the 52100 steel experienced microstructural decay in the form of dissolution of residual cementite and tempered carbides. The present study shows that the Hybrid 60 steel develops less microstructural decay than the 52100 steel at the same RCF conditions suggesting that Hybrid 60 could be suitable for replacing 52100 in applications where higher RCF is needed. The improved microstructure stability in Hybrid 60 is attributed to the more stable secondary carbides and intermetallic precipitates as compared to the cementite in the 52100 steel.

Place, publisher, year, edition, pages
ASTM International, 2024
Series
ASTM Special Technical Publication, ISSN 0066-0558 ; STP 1649
Keywords
Rolling contact fatigue, bearing steel, microstructure
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-342130 (URN)10.1520/STP164920220107 (DOI)2-s2.0-85188654768 (Scopus ID)
Conference
1st ASTM Bearing and Transmission Steels Technology Symposium, New Orleans, USA, 2-4 November 2022
Note

QC 20240403

Available from: 2024-01-14 Created: 2024-01-14 Last updated: 2024-04-03Bibliographically approved
3. Revealing the active microstructure decay mechanism in a novel martensitic dual-hardening steel during rolling contact fatigue
Open this publication in new window or tab >>Revealing the active microstructure decay mechanism in a novel martensitic dual-hardening steel during rolling contact fatigue
Show others...
2023 (English)Manuscript (preprint) (Other academic)
Abstract [en]

We investigate the microstructural degradation during rolling contact fatigue (RCF) in a novel martensitic dual-hardening steel. The microstructural decay that eventually leads to fatigue failure is studied by electron microscopy, atom probe tomography and synchrotron X-ray diffraction (SXRD). The initial microstructure of the steelconsists of tempered martensite with a fine dispersion of secondary M7C3, and NiAl precipitates. During RCF testing at 2.2 GPa contact pressure, ferrite microbands develop and the partial dissolution of NiAl and M7C3 precipitates occur within theferrite microbands. For the RCF testing at higher contact pressure of 2.8 GPa, nanosized ferrite grains develop in the ferrite microbands. The SXRD analysis reveals a decrease in dislocation density in the sub-surface region experiencing microstructural decay. This is believed to be associated with the rearrangement of dislocations into low energy configuration cells. We conclude this manuscript by proposing a microstructure decay mechanism for dual-hardening martensitic steels that provides insights in the fatigue initiation process.

Keywords
Dual-hardening steel, bearing steel, microstructural decay, dislocation density, rolling contact fatigue
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-342132 (URN)
Note

QC 20240116

Available from: 2024-01-14 Created: 2024-01-14 Last updated: 2024-03-18Bibliographically approved
4. Micromechanical response of dual-hardening martensitic bearing steel before and after rolling contact fatigue
Open this publication in new window or tab >>Micromechanical response of dual-hardening martensitic bearing steel before and after rolling contact fatigue
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Material decay in bearing steels under rolling contact fatigue (RCF) leads to fatigue initiation and failure. This study examines the local structure-property relationshipin decayed material through in-situ compression testing of micropillars prepared froma dual-hardening martensitic bearing steel (Hybrid 60) before and after RCF testing. Specific crystal orientations are tested, revealing differing plastic behavior in the virgin and decayed material. RCF-induced ferritic microbands create highly localized deformation, that alters the micromechanical response. Crystal plasticity simulations confirm these findings, highlighting increased critical resolved shear stress and reduced strain hardening in decayed micropillars.

National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-342134 (URN)
Note

QC 20240115

Available from: 2024-01-14 Created: 2024-01-14 Last updated: 2024-01-16Bibliographically approved
5. Microstructure Stability during Rolling Contact Fatigue: A Comparative Study of a Martensitic and a precipitation-strengthened Martensitic Steel
Open this publication in new window or tab >>Microstructure Stability during Rolling Contact Fatigue: A Comparative Study of a Martensitic and a precipitation-strengthened Martensitic Steel
2024 (English)Manuscript (preprint) (Other academic)
Abstract [en]

This comparative study investigates the microstructure decay in one martensiticlow-carbon steel (Hardox 400), and one precipitation-strengthened martensitic low carbon steel (Hybrid 60) during cyclic contact loading. The primary objective isto directly compare the resistance to material decay for martensitic steel with andwithout precipitation-strengthening. The microstructural decay is characterized indetail using scanning electron microscopy, electron backscatter diffraction, and atom probe tomography. It is found that both steels have similar microstructural decay, including the formation of ferrite microbands and nano ferrite grains. However,  the Hybrid 60 steel demonstrates superior microstructure stability due to the effectiveness of its precipitates in inhibiting cyclic plastic deformation. The NiAl and M7C3 precipitates have a high resistance to dissolution and their ability to immobilize dislocations, impedes the material degradation, and could prolong service life in contact fatigue applications. 

National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-342135 (URN)
Note

QC 20240116

Available from: 2024-01-14 Created: 2024-01-14 Last updated: 2024-01-16Bibliographically approved

Open Access in DiVA

fulltext(239189 kB)850 downloads
File information
File name FULLTEXT02.pdfFile size 239189 kBChecksum SHA-512
a9d7b0822badd90ce0339156c06319753d336088d7a0ce2f717edd5ecc24f90ec3994da8a3f7d772e5c961c4865c29628d04661928e123b01de1c890c0bfa233
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Loaiza, Tania
By organisation
Properties
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar
Total: 850 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2511 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf