kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cleanroom‐Free Direct Laser Micropatterning of Polymers for Organic Electrochemical Transistors in Logic Circuits and Glucose Biosensors
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems. Synthetic Physiology lab, Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, Pavia, 27100 Italy.ORCID iD: 0000-0002-8821-6759
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, Centres, Center for the Advancement of Integrated Medical and Engineering Sciences, AIMES.ORCID iD: 0000-0001-7442-3020
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.ORCID iD: 0000-0003-0960-9931
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0002-6560-5209
Show others and affiliations
2024 (English)In: Advanced Science, E-ISSN 2198-3844Article in journal (Refereed) Published
Abstract [en]

Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 µm) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research.

Place, publisher, year, edition, pages
Wiley , 2024.
Keywords [en]
conjugated polymer, direct writing, organic electrochemical transistor, poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate, ultrashort pulsed lasers
National Category
Organic Chemistry Other Electrical Engineering, Electronic Engineering, Information Engineering Other Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-342521DOI: 10.1002/advs.202307042ISI: 001142422700001Scopus ID: 2-s2.0-85182492139OAI: oai:DiVA.org:kth-342521DiVA, id: diva2:1830380
Funder
Swedish Research Council, 2018‐03483Swedish Research Council, 2022‐04060Swedish Research Council, 2022‐02855Knut and Alice Wallenberg Foundation, 2015.0178Knut and Alice Wallenberg Foundation, 2020.0206Knut and Alice Wallenberg Foundation, 2021.0312Swedish Research Council, 2022-00374
Note

QC 20240123

Available from: 2024-01-23 Created: 2024-01-23 Last updated: 2024-02-06Bibliographically approved
In thesis
1. Organic Electronics and Microphysiological Systems to Interface, Monitor, and Model Biology
Open this publication in new window or tab >>Organic Electronics and Microphysiological Systems to Interface, Monitor, and Model Biology
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Biological processes in the human body are regulated through complex and precise arrangements of cell structures and their interactions. In vivo models serve as the most accurate choice for biological studies to understand these processes. However, they are costly, time-consuming, and raise ethical issues. Microphysiological systems have been developed to create advanced in vitro models that mimic in vivo-like microenvironments. They are often combined with integrated sensing technologies to perform real-time measurements to gain additional information. However, conventional sensing electrodes, made of inorganic materials such as gold or platinum, differ fundamentally from biological materials. Organic bioelectronic devices made from conjugated polymers are promising alternatives for biological sensing applications and aim to improve the interconnection between abiotic electronics and biotic materials. The widespread use of these devices is partly hindered by the limited availability of materials and low-cost fabrication methods. In this thesis, we provide new tools and materials that facilitate the use of organic bioelectronic devices for in vitro sensing applications. We developed a method to pattern the conducting polymer poly(3,4‑ethylenedioxythiophene) polystyrene sulfonate and to fabricate organic microelectronic devices using wax printing, filtering, and tape transfer. The method is low-cost, time-effective, and compatible with in vitro cell culture models. To achieve higher resolution, we further developed a patterning method using femtosecond laser ablation to fabricate organic electronic devices such as complementary inverters or biosensors. The method is maskless and independent of the type of conjugated polymer. Besides fabrication processes, we introduced a newly synthesized material, the semiconducting conjugated polymer p(g42T‑T)‑8%OH. This polymer contains hydroxylated side chains that enable surface modifications, allowing control of cell adhesion. Using the new femtosecond laser-based patterning method, we could fabricate p(g42T‑T)‑8%OH‑based organic electrochemical transistors to monitor cell barrier formations in vitro. Microphysological systems are further dependent on precise compartmentalization to study cellular interaction. We used femtosecond laser 3D printing to develop a co-culture neurite guidance platform to control placement and interactions between different types of brain cells. In summary, the thesis provides new tools to facilitate the fabrication of organic electronic devices and microphysiological systems. This increases their accessibility and widespread use to interface, monitor, and model biological systems. 

Abstract [sv]

Biologiska processer i människokroppen regleras genom komplexa och exakta arrangemang av cellstrukturer och deras interaktioner. In vivo modeller är det mest exakta valet för biologiska studier för att förstå dessa processer. Men de är dyra, tidskrävande och behäftade med etiska dilemman. Mikrofysiologiska system har utvecklats för att skapa avancerade in vitro-modeller för att efterlikna mikromiljöer som finns in vivo. Dessa system kombineras ofta med integrerade sensortekniker för att utföra mätningar i realtid för att få ytterligare information. Konventionella elektroder, gjorda av oorganiska material som guld eller platina, skiljer sig dock fundamentalt från biologiska material. Organiska bioelektroniska komponenter tillverkade av konjugerade polymerer är intressanta alternativ för biologiska sensortillämpningar eftersom de har potential att förbättra sammankopplingen mellan abiotisk elektronik och biotiska material. Deras användning hindras delvis av den begränsade tillgången på material och billiga tillverkningsmetoder. I den här avhandlingen tillhandahåller vi nya verktyg och material som underlättar användningen av organiska bioelektroniska komponenter för in vitro avkänningstillämpningar. Vi utvecklade en metod för att mönstra den ledande polymeren poly(3,4-etylendioxitiofen) polystyrensulfonat och tillverka organiska mikroelektroniska komponenter med hjälp av vaxtryck, filtrering och tejpöverföring. Metoden har låg kostnad, är tidseffektiv och kompatibel med in vitro cellodlingsmodeller. För att uppnå högre upplösning vidareutvecklade vi en mönstringsmetod med femtosekundlaserablation för att tillverka organiska elektroniska enheter såsom komplementära växelriktare eller biosensorer. Metoden involverar inga masker och är inte beroende av typen av konjugerad polymer. Förutom tillverkningsprocesser introducerade vi ett nytt material, den konjugerade polymeren p(g42T‑T)‑8%OH. Denna polymer innehåller hydroxylerade sidokedjor som möjliggör ytmodifieringar, vilket tillåter kontroll av celladhesion. Med den nya femtonsekundslaser baserade mönstringsmetoden kunde vi tillverka p(g42T‑T)‑8%OH-baserade organiska elektrokemiska transistorer för att följa cellbarriärformationer in vitro. Slutligen använde vi femtonsekundslaserutskrift för att tillverka en plattform som kan guida neuriter i co-kultur  för att undersöka cellinteraktionerna mellan olika typer av hjärnceller. Sammanfattningsvis beskriver avhandlingen nya verktyg för att underlätta tillverkningen av organiska elektroniska enheter och mikrofysiologiska system. Detta ökar deras tillgänglighet och möjliggör utbredd användning för gränssnitt, övervakning och modellering av biologiska system.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2024. p. 69
Series
TRITA-CBH-FOU ; 2024:3
Keywords
organic bioelectronics, organic electrochemical transistors, conjugated polymers, microphysiological systems, in vitro cell models, Organisk bioelektronik, organiska elektrokemiska transistorer, Konjugerade polymerer, Mikrofysiologiska system, in vitro-modeller
National Category
Cell Biology Organic Chemistry Engineering and Technology Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Medical Technology
Identifiers
urn:nbn:se:kth:diva-343016 (URN)978-91-8040-837-0 (ISBN)
Public defence
2024-03-05, Nils Ringertz, Biomedicum, Solnavägen 9, 17165, Solna, 09:00 (English)
Opponent
Supervisors
Note

QC 2024-02-06

Available from: 2024-02-06 Created: 2024-02-06 Last updated: 2024-04-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttps://onlinelibrary.wiley.com/doi/full/10.1002/advs.202307042

Authority records

Enrico, AlessandroBuchmann, SebastianDe Ferrari, FabioLin, YunfanMårtensson, GustafStemme, GöranHamedi, MahiarNiklaus, FrankHerland, AnnaZeglio, Erica

Search in DiVA

By author/editor
Enrico, AlessandroBuchmann, SebastianDe Ferrari, FabioLin, YunfanMårtensson, GustafStemme, GöranHamedi, MahiarNiklaus, FrankHerland, AnnaZeglio, Erica
By organisation
Micro and NanosystemsNano BiotechnologyScience for Life Laboratory, SciLifeLabCenter for the Advancement of Integrated Medical and Engineering Sciences, AIMESFibre Technology
In the same journal
Advanced Science
Organic ChemistryOther Electrical Engineering, Electronic Engineering, Information EngineeringOther Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 131 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf