kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Laboratory Liquid-Jet X-ray Microscopy and X-ray Fluorescence Imaging for Biomedical Applications
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-0535-3708
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-6854-1423
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0003-0551-7976
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0001-5678-5298
Show others and affiliations
2024 (English)In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 25, no 2, article id 920Article in journal (Refereed) Published
Abstract [en]

Diffraction-limited resolution and low penetration depth are fundamental constraints in optical microscopy and in vivo imaging. Recently, liquid-jet X-ray technology has enabled the generation of X-rays with high-power intensities in laboratory settings. By allowing the observation of cellular processes in their natural state, liquid-jet soft X-ray microscopy (SXM) can provide morphological information on living cells without staining. Furthermore, X-ray fluorescence imaging (XFI) permits the tracking of contrast agents in vivo with high elemental specificity, going beyond attenuation contrast. In this study, we established a methodology to investigate nanoparticle (NP) interactions in vitro and in vivo, solely based on X-ray imaging. We employed soft (0.5 keV) and hard (24 keV) X-rays for cellular studies and preclinical evaluations, respectively. Our results demonstrated the possibility of localizing NPs in the intracellular environment via SXM and evaluating their biodistribution with in vivo multiplexed XFI. We envisage that laboratory liquid-jet X-ray technology will significantly contribute to advancing our understanding of biological systems in the field of nanomedical research.

Place, publisher, year, edition, pages
MDPI AG , 2024. Vol. 25, no 2, article id 920
Keywords [en]
bioimaging, cell imaging, liquid-jet X-ray source, multiplexed imaging, nanomedicine, stain-free imaging, X-ray fluorescence imaging, X-ray microscopy
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
URN: urn:nbn:se:kth:diva-343205DOI: 10.3390/ijms25020920ISI: 001151313100001PubMedID: 38255992Scopus ID: 2-s2.0-85183335794OAI: oai:DiVA.org:kth-343205DiVA, id: diva2:1836107
Note

QC 20240209

Available from: 2024-02-08 Created: 2024-02-08 Last updated: 2025-01-03Bibliographically approved
In thesis
1. Preclinical X-Ray Fluorescence Imaging with Multifunctional Nanoparticles
Open this publication in new window or tab >>Preclinical X-Ray Fluorescence Imaging with Multifunctional Nanoparticles
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

X-ray fluorescence imaging (XFI) is an emerging technique for preclinical studies, characterized by high resolution, specificity, and sensitivity. It relies on nanoparticles (NPs) as contrast agents, which must be constituted of specific elements that match the X-ray source energy for detection. Laboratory liquid metal-jet X-ray sources enable compact in vivo XFI, thereby extending the accessibility of this imaging technique beyond synchrotron facilities.

When designing NPs as contrast agents, biocompatibility is essential for both preclinical and clinical imaging, often requiring a passivating biocompatible coating on the NP surface. The NP cores can provide contrast by their elemental composition, while coating, conjugation, and decoration strategies can add other functionalities and improve biocompatibility.

In this thesis, multifunctional NPs are designed to extend the functionality of XFI contrast agents by incorporating optically fluorescent or magnetically active components: conjugated carbon quantum dots, dye-doped silica shell, and decorated superparamagnetic iron oxide NPs. The designed multifunctional NPs allow correlative and multiscale imaging with complementary techniques such as confocal optical microscopy or magnetic resonance imaging (MRI). Furthermore, these NPs also facilitate more comprehensive studies on NP pharmacokinetics, paving the way for more robust investigations in the field of nanomedicine.

The benefits of multifunctional NPs are demonstrated with two approaches. First, in vivo correlative imaging with MRI and XFI is shown to reduce false positives caused by MRI artifacts in the lungs and abdomen. Second, XFI is employed to enable rapid NP bioengineering, by iteratively improving NP properties and administration strategies for passive tumor targeting. Optical and X-ray fluorescent multifunctional NPs enable the co-localization of NPs at both macroscopic and microscopic levels with XFI and confocal microscopy, correlating NP accumulation in organs with NP-cell interactions. These results highlight the role of XFI in the field of nanomedicine, with potential applications in pharmacokinetics, tumor targeting, treatment monitoring, and the development of medical devices.

Abstract [sv]

Röntgenfluorescensavbildning (RFA) är en växande teknik för prekliniska studier, och karakteriseras av hög upplösning, specificitet och känslighet. RFA använder nanopartiklar (NP:ar) som kontrastmedel, vilket måste innehålla specifika element som matchar röntgenkällans energi. Röntgenkällor med flytande metallstråleteknik möjliggör kompakt in vivo RFA i laboratorier, vilket gör denna avbildningsteknik tillgänglig även utanför synkrotronanläggningar.

Vid utformningen av NP:ar som kontrastmedel är biokompatibilitet avgörande betydelse både för preklinisk och klinisk avbildning, vilket ofta kräver ett passiverande biokompatibelt skikt på NP-ytan. NP-kärnorna kan ge kontrast genom sin grundämnessammansättning, medan beläggnings-, konjugerings- och dekorationsstrategier kan lägga till andra funktionaliteter och förbättra biokompatibiliteten.

I denna avhandling syntetiseras multifunktionella NP:ar för att utöka funktionaliteten hos RFA-kontrastmedel genom att inkorporera optiskt fluorescerande eller magnetiskt aktiva komponenter: konjugerade kolkvantprickar, färgämnesdopat  kiseldioxidskal och dekorerade superparamagnetiska järnoxid NP:ar. De utformade multifunktionella NP:arna möjliggör korrelativ avbildning med kompletterande tekniker som konfokal optisk mikroskopi eller magnetisk resonanstomografi (MR). Dessutom underlättar dessa NP:ar också mer omfattande studier av NP-farmakokinetik, vilket banar väg för bättre underbyggda undersökningar inom nanomedicin.

Fördelarna med multifunktionella NP:ar demonstreras med två tillvägagångssätt. För det första har in vivo korrelativ avbildning med MR och RFA visat sig minska antalet falska positiva resultat orsakade av MR-artefakter i lungorna och buken. För det andra används RFA för att möjliggöra snabb utveckling och design av NP:ar, genom att iterativt förbättra NP-egenskaper och administreringsstrategier för passiv ansamling i tumörer. Optiska och röntgenfluorescerande multifunktionella NP:ar möjliggör samlokalisering av NP:ar på både makroskopisk och mikroskopisk nivå med RFA och konfokal mikroskopi, vilket korrelerar NP-ackumuleringar i organ med NP-cellinteraktioner. Dessa resultat belyser RFA:s roll inom nanomedicinfältet, med dess potentiella tillämpningar inom farmakokinetik, tumörmålsökning, behandlingsövervakning och utveckling av medicinska instrument.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024
Series
TRITA-SCI-FOU ; 2024:07
National Category
Radiology, Nuclear Medicine and Medical Imaging
Research subject
Physics, Biological and Biomedical Physics
Identifiers
urn:nbn:se:kth:diva-343804 (URN)978-91-8040-841-7 (ISBN)
Public defence
2024-03-22, Kollegiesalen, Brinellvägen 8, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 240227

Available from: 2024-02-27 Created: 2024-02-22 Last updated: 2024-02-27Bibliographically approved
2. Laboratory Soft X-Ray Microscopy for Biological Imaging
Open this publication in new window or tab >>Laboratory Soft X-Ray Microscopy for Biological Imaging
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Soft x-ray microscopy within the water window is a powerful technique for high-resolution biological imaging due to its capability to image whole, intact cells (approximately 10 μm thick) in their near-native cellular environment. The short wavelength of water-window radiation (λ = 2.3 − 4.4 nm, E = 284−540 eV) used in this imaging technique provides high natural contrast for cellular imaging due to the significant difference in soft x-ray attenuation lengths between organic materials, such as proteins and lipids (i.e., carbon), and water (i.e., oxygen). In addition to the high imaging contrast, the high penetration of soft x-rays eliminates the need for laborious sample preparation, including sectioning, chemical fixation, heavy-metal staining, and fluorescence labeling. The majority of soft x-ray microscopes are operated using synchrotron radiation sources, as they require x-ray sources with high spectral brightness, which limits accessibility. To complement these synchrotron-based instruments, we develop a laboratory-based soft x-ray microscope as alternative system for biological imaging. Motivated by this background, this thesis presents the development of laboratory soft x-ray microscopy focused on improving image resolution and optimizing sample preparation. The resolution has been improved to 25 nm(half-period) through vibration analysis and mitigation. Sample preparation optimization was achieved by controlling the ice thickness during devitrification process, applied to both manual plunge-freezing and automated systems, allowing for the preservation of cellular structures and improved image quality. These developments have enabled the establishment of methodology for investigating nanoparticle interactions in-vitro and in-vivo, relying solely on x-ray imaging. These advancements have enabled the investigation of uptake and dynamics of nanoparticles in organelles. Moreover, the applications extend beyond bio-nano interactions; they have also facilitated quantitative studies in viral infections of giant DNA viruses.

Abstract [sv]

Mjukröntgenmikroskopi inom vattenfönstret är en kraftfull teknik för hög-upplöst biologisk avbildning tack vare dess förmåga att avbilda hela, intakta celler (ungefär 10 μm tjocka) i deras nära naturliga cellulära miljö. Den korta våglängden hos strålning i vattenfönstret (λ = 2.3–4.4 nm, E = 284–540 eV) som används i denna avbildningsteknik ger hög naturlig kontrast för cellulär avbildning, tack vare den betydande skillnaden i mjukröntgens absorptionslängd mellan organiska material, såsom proteiner och lipider (dvs. kol), och vatten (dvs. syre). Förutom den höga bildkontrasten eliminerar den höga penetrationen av mjukröntgen behovet av tidskrävande provberedning, inklusive sektionering, kemisk fixering, tungmetallfärgning och fluorescensmärkning. De flesta mjukröntgenmikroskop finns hos synkrotronstrålningskällor eftersom de kräver röntgenkällor med hög spektral ljusstyrka, vilket begränsar tillgängligheten. För att komplettera dessa synkrotronbaserade instrument utvecklar vi ett laboratoriebaserat mjukröntgenmikros-kop som ett alternativt system för biologisk avbildning. Motiverad av denna bakgrund presenterar denna avhandling utvecklingen av laboratoriebaserad mjukröntgenmikroskopi med fokus på att förbät-tra bildupplösningen och optimera provberedningen. Upplösningen har förbättrats till 25 nm (halvperiod) genom vibrationsanalys och dämpning. Optimering av provberedning uppnåddes genom att kontrollera istjockleken under vitrifieringsprocessen, tillämpad både vid manuell snabbfrysning och automatiserade system, vilket möjliggjorde bevarandet av cellstrukturer och förbättrad bildkvalitet. Dessa utvecklingar har möjliggjort etableringen av en metodik för att undersöka nanopartikelinteraktioner in vitro och in vivo, enbart med hjälp av röntgenavbildning. Framstegen har också möjliggjort undersökning av upptag och dynamik av nanopartiklar i organeller. Dessutom sträcker sig tillämpningarna bortom bio-nano-interaktioner; de har också underlättat kvantitativa studier av virusinfektioner med gigantisk DNA-virus.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. p. 45
Series
TRITA-SCI-FOU ; 2024:61
Keywords
soft x-rays, water window, microscopy, cellular imaging
National Category
Physical Sciences Biological Sciences Biomedical Laboratory Science/Technology
Research subject
Biological Physics
Identifiers
urn:nbn:se:kth:diva-358040 (URN)978-91-8106-159-8 (ISBN)
Public defence
2025-01-17, Kollegiesalen, Brinellvägen 6, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2025-01-03

Available from: 2025-01-03 Created: 2025-01-03 Last updated: 2025-02-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Arsana, Komang G.Y.Saladino, GiovanniBrodin, BerthaToprak, MuhammetHertz, Hans

Search in DiVA

By author/editor
Arsana, Komang G.Y.Saladino, GiovanniBrodin, BerthaToprak, MuhammetHertz, Hans
By organisation
Biomedical and X-ray Physics
In the same journal
International Journal of Molecular Sciences
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 233 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf