kth.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effect of Stiffness on the Dynamics of Entangled Nanofiber Networks at Low Concentrations
KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Strömningsmekanik och Teknisk Akustik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.ORCID-id: 0000-0002-6302-0004
Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.ORCID-id: 0000-0001-8775-5251
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.ORCID-id: 0000-0002-2346-7063
KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik.ORCID-id: 0000-0002-2504-3969
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 56, nr 23, s. 9595-9603Artikel i tidskrift, Editorial material (Refereegranskat) Published
Abstract [en]

Biopolymer network dynamics play a significant role in both biological and materials science. This study focuses on the dynamics of cellulose nanofibers as a model system given their relevance to biology and nanotechnology applications. Using large-scale coarse-grained simulations with a lattice Boltzmann fluid coupling, we investigated the reptation behavior of individual nanofibers within entangled networks. Our analysis yields essential insights, proposing a scaling law for rotational diffusion, quantifying effective tube diameter, and revealing release mechanisms during reptation, spanning from rigid to semiflexible nanofibers. Additionally, we examine the onset of entanglement in relation to the nanofiber flexibility within the network. Microrheology analysis is conducted to assess macroscopic viscoelastic behavior. Importantly, our results align closely with previous experiments, validating the proposed scaling laws, effective tube diameters, and onset of entanglement. The findings provide an improved fundamental understanding of biopolymer network dynamics and guide the design of processes for advanced biobased materials. 

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS) , 2023. Vol. 56, nr 23, s. 9595-9603
Nationell ämneskategori
Biofysik Bioinformatik (beräkningsbiologi)
Identifikatorer
URN: urn:nbn:se:kth:diva-343525DOI: 10.1021/acs.macromol.3c01526ISI: 001141570800001Scopus ID: 2-s2.0-85178555657OAI: oai:DiVA.org:kth-343525DiVA, id: diva2:1838199
Forskningsfinansiär
Vetenskapsrådet, 2018-06469Knut och Alice Wallenbergs Stiftelse
Anmärkning

QC 20240216

Tillgänglig från: 2024-02-15 Skapad: 2024-02-15 Senast uppdaterad: 2024-05-31Bibliografiskt granskad
Ingår i avhandling
1. Dynamics and interactions in entangled nanofibre dispersions
Öppna denna publikation i ny flik eller fönster >>Dynamics and interactions in entangled nanofibre dispersions
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Biopolymers and their networks are fundamental to numerous biological and synthetic systems, with applications ranging from extracellular matrices in biological tissues to engineered nanostructured materials like cellulose-based nanocomposites. Understanding the dynamics of biopolymers in these networks is crucial due to their potential in material science and biotechnology, such as in developing sustainable materials and enhancing drug delivery mechanisms. The intricate network structures, from fibrous matrices in natural systems to designed frameworks in advanced materials, play a pivotal role in determining the mechanical and transport properties of the overall system.

This thesis delves into the dynamics of biopolymers, focusing specifically on the diffusion processes within such networks. The complexity of biopolymer behavior in networked environments involves multiple factors including polymer stiffness, network structure, and the interaction between biopolymer components. The diffusion of biopolymer fibres themselves, as well as nanoparticles within these networks, is explored through detailed coarse-grained molecular dynamics simulations. These simulations aim to model the nuanced interaction dynamics that influence diffusion, providing insights into how these factors affect biopolymer networks' rheological properties and functional capabilities.

This work contributes to the broader understanding of how biopolymers behave in complex environments by investigating the fundamental mechanisms of diffusion in biopolymer networks. It addresses the need for a deeper exploration of biopolymer dynamics to inform the design and synthesis of new biomaterials and bio-based materials. The findings from this thesis are expected to offer implications for enhancing the functionality of biopolymer-based systems in various applications, from improving the efficiency of biomaterials used in medical applications to optimizing the performance of bio-based composites in industrial applications. 

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2024
Serie
TRITA-SCI-FOU ; 2024:25
Nationell ämneskategori
Den kondenserade materiens fysik
Forskningsämne
Teknisk mekanik
Identifikatorer
urn:nbn:se:kth:diva-346647 (URN)978-91-8040-936-0 (ISBN)
Disputation
2024-06-13, D1, Lindstedtsvägen 9, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Anmärkning

QC240527

Tillgänglig från: 2024-05-27 Skapad: 2024-05-21 Senast uppdaterad: 2024-06-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Motezakker, Ahmad RezaRosén, TomasLundell, FredrikSöderberg, Daniel

Sök vidare i DiVA

Av författaren/redaktören
Motezakker, Ahmad RezaCórdoba, AndrésRosén, TomasLundell, FredrikSöderberg, Daniel
Av organisationen
Strömningsmekanik och Teknisk AkustikWallenberg Wood Science CenterFiber- och polymerteknologiTeknisk mekanikFiberprocesser
I samma tidskrift
Macromolecules
BiofysikBioinformatik (beräkningsbiologi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 101 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf