kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Fully Integrated Filtering Vivaldi Antenna With High Selectivity and Wide Out-of-Band Suppression
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0001-7091-8026
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0001-7269-5241
2024 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 12, p. 2690-2700Article in journal (Refereed) Published
Abstract [en]

This paper introduces a novel filtering approach that employs integrated periodic structures with a conventional Vivaldi antenna to achieve a fully integrated bandpass filtering antenna. The approach results in a wide out-of-band suppression, high passband selectivity, adjustable operational bandwidth, and low insertion loss. The proposed filtering approach maintains the original size of the conventional Vivaldi antenna (base antenna) without requiring additional modifications. To validate the approach, we present two filtering Vivaldi antennas: filtering antenna I (center frequency: 18GHz, fractional bandwidth: 21%, insertion loss: 0.32dB) and filtering antenna II (center frequency: 6.5GHz, fractional bandwidth: 12%, insertion loss: 0.6dB). Their wide out-of-band gain suppression (typically >= 15dB) covers the conventional Vivaldi antenna's frequency range (4-24GHz). A prototype of the filtering antenna I is manufactured. Its measurement results validate the proposed approach and show good agreement with the simulated reflection coefficient, realized gain, and radiation patterns. The features of the proposed filtering antenna approach, make it suitable for various applications requiring efficient frequency filtering.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2024. Vol. 12, p. 2690-2700
Keywords [en]
Filtering, Antennas, Vivaldi antennas, Bandwidth, Band-pass filters, Passband, Slot antennas, Filtering antenna, fully integrated antenna design, metasurface, out-of-band suppression, wideband antenna, filtenna
National Category
Signal Processing Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-342720DOI: 10.1109/ACCESS.2023.3348751ISI: 001140279900001Scopus ID: 2-s2.0-85181556812OAI: oai:DiVA.org:kth-342720DiVA, id: diva2:1838463
Note

QC 20240216

Available from: 2024-02-16 Created: 2024-02-16 Last updated: 2024-05-10Bibliographically approved
In thesis
1. Advancements in RF Front-End Efficiency for Next-Generation Communication Systems
Open this publication in new window or tab >>Advancements in RF Front-End Efficiency for Next-Generation Communication Systems
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The increasing demand for higher data rates and capacity encompasses diverse applications in modern wireless systems. This necessitates addressing the limitations of conventional wireless systems, e.g. bandwidth constraints, efficiency issues, link budget limitations, and size and cost constraints. To achieve high data rates in the gigabit-per-second (Gbit/s), wider bandwidths in the gigahertz (GHz) range are required, leading to a transition to the microwave and millimeter wave (mm-wave) frequency band. However, this transition presents additional challenges, such as increased insertion- and free space path losses. All of these challenges are particularly critical in the Radio Frequency (RF) front-end, which comprises antennas along with other necessary RF elements, e.g. Power Amplifiers (PAs), that play a significant role in determining overall system performance. In this thesis, our research focuses on advancements in RF front-end efficiency— encompassing energy, spectral, size, and cost efficiency— to contribute to meeting the growing demands of next-generation communication systems. 

Phased array antennas are widely utilized in modern communication networks to enhance radiation characteristics such as gain and scan capability. Additionally, the direct-integration technique, which removes the need for any intermediate 50 Ω interface impedance, offers improvements in efficiency, size- and cost reduction. This thesis develops active direct-integrated phased array antenna (AIPAA) designs that utilize a combination of wide-scan phased array antennas and direct-integration technique. The presented designs advance the radiation performance through the phased array antenna, enhance the overall efficiency of the antenna and PAs combination via direct-integration, eliminate matching networks' losses through direct-integration, and remove RF switch elements by introducing a half-duplex array. The active integration approach employs an interdisciplinary co-design method to address complex interactions and mutual coupling in the proposed compact-size AIPAAs. In this thesis, the mutual interactions that can impact the system performance have been theoretically and practically discussed in our proposed coupling reduction approach. Besides, a seamless integration of filtering functionality, using proposed periodic structures, into a Vivaldi antenna is employed to design a high-selectivity filtering antenna with wide out-of-band suppression. These proposed designs and approaches help to enhance the performance by improving the spectral- and energy efficiencies, reducing the size, and minimizing costs.

Another approach in this thesis, utilizing irregularly partitioned phased arrays, offers a means to reduce the number of transmitter/receiver modules (system simplification) while maintaining functionality in next-generation wireless systems. An innovative fast-partitioning iterative optimization approach, introduced in the last part of the thesis, overcomes the computational cost/time of phased arrays' exact partitioning while resulting in satisfactory radiation characteristics over wide-scan coverage for large arrays.

Abstract [sv]

Den ökande efterfrågan på högre datahastigheter och kapacitet omfattar olika tillämpningar inom moderna trådlösa system. Detta kräver att man tar itu med begränsningarna hos konventionella trådlösa system, t.ex. bandbreddsrestriktioner, effektivitetsproblem, samt länkbudget-, storleks- och kostnadsbegränsningar. För att uppnå höga datahastigheter i gigabit per sekund (Gbit/s) krävs en större bandbredd i gigahertzområdet, vilket leder till en övergång till mikrovågs- och millimetervågsfrekvensbandet. Denna övergång innebär dock ytterligare utmaningar, såsom ökad insättningsförlust och fri rymdledningsförlust. Alla dessa utmaningar är särskilt kritiska i Radio Frequency (RF) front-end, som omfattar antenner tillsammans med andra nödvändiga RF-element, t.ex. effektförstärkare (PAs), och spelar en betydande roll för att bestämma den totala systemprestandan. I denna avhandling fokuserar vår forskning på framsteg inom RF front-end effektivitet - som omfattar energi-, spektral-, storleks- och kostnadseffektivitet - för att bidra till att möta de växande kraven hos nästa generations kommunikationssystem.   

Fasstyrda antenner används i stor utsträckning i moderna kommunikationsnät för att förbättra strålningskaraktäristikerna som förstärkning och skanningsförmåga. Dessutom erbjuder den direktintegrerade tekniken, vilken eliminerar behovet av någon mellanliggande 50 Ω gränssnittsimpedans, förbättringar i effektivitet, storlek och kostnadsreducering. Denna avhandling utvecklar aktiva direktintegrerade fasstyrda antenner (AIPAAs) med ett stort utstyrningsområden.  De främjar strålningsprestanda från fasstyrda antenner, förbättrar kombinationen av antennelementet och PAs gemensamma effektivitet genom direktintegration, eliminerar matchningsnätverksförluster genom direktintegration och tar bort RF-switchelement genom att introducera en halvduplexarray. Den aktiva integrationsmetoden använder en tvärvetenskaplig samutvecklingsmetod för att hantera komplexa interaktioner och ömsesidig koppling i de utvecklade kompakta AIPAAs. Den ömsesidiga kopplingen kan påverka systemprestanda, vilket teoretiskt och praktiskt behandlas i vår föreslagna kopplingsreduktionsmetod i denna avhandling. Dessutom utvecklas en integration av filterfunktionalitet, med hjälp av föreslagna periodiska strukturer, i en Vivaldi-antenn för att utforma en högselektiv filterantenn med bred och hög dämpning utanför det önskade frekvensintervallet. Dessa föreslagna design och tillvägagångssätt förbättrar inte bara prestanda i termer av både spektral- och energieffektivitet, utan minskar också storlek och kostnad.

Ur ett annat perspektiv erbjuder användningen av oregelbundet grupperad matning av fasstyrda antenner ett sätt att minska antalet sändare/mottagarmoduler (systemförenkling) samtidigt som funktionaliteten bibehålls i nästa generations trådlösa system. Ett innovativt snabb teknik for att hitta bra grupperingar av aperturen är presenterad i den sista delen av avhandlingen. Tekniken minskar den beräkningsmässiga kostnaden/tiden för att utvärdera lösningar från en exakta uppdelningsalgoritm. Resulten ger en tillfredsställande strålningskaraktäristik för bredskannande täckning för stora antenner.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 80
Series
TRITA-EECS-AVL ; 2024:46
Keywords
phased array, direct-integration, coupling reduction, irregular array, energy and spectral efficiency, RF front-end, periodic structure, wide-scan array., fasstyrda antenner, direktintegration, kopplingsreduktion, gruppantenner med oregelbundet indelad matning, energi- och spektraleffektivitet, RF front-end, periodisk struktur, bredskannande array.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-346265 (URN)978-91-8040-926-1 (ISBN)
Public defence
2024-06-05, https://kth-se.zoom.us/j/64147253748, D3, Lindstedtsvägen 9, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20240513

Available from: 2024-05-13 Created: 2024-05-10 Last updated: 2024-06-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Emadeddin, AhmadJonsson, B. Lars G.

Search in DiVA

By author/editor
Emadeddin, AhmadJonsson, B. Lars G.
By organisation
Electromagnetic Engineering and Fusion Science
In the same journal
IEEE Access
Signal ProcessingOther Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 124 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf