kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A new optimal PV installation angle model in high-latitude cold regions based on historical weather big data
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0001-6866-3036
Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 60176, Norrköping, Sweden, Folkborgsvägen 17.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0002-8888-4474
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0001-7193-5303
Show others and affiliations
2024 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 359, article id 122690Article in journal (Refereed) Published
Abstract [en]

PV technologies are regarded as one of the most promising renewable options for the transition towards Net Zero. Despite the rapid development of PV systems in recent years, achieving the necessary goals requires more than a threefold increase in annual capacity deployment by 2030. However, current PV systems often fall short of optimal performance due to improper installation angles. In high-latitude cold regions, the actual PV generation capacity is frequently overestimated due to the omission of snow conditions. This study introduces a novel model designed for high-latitude regions to predict local optimal PV installation angle that maximizes PV power generation, utilizing historical weather big data, including snowfall and melting effects. A case study is presented within a Swedish context to demonstrate the implementation of these methods. The results highlight the crucial role snow conditions play in determining PV performance, resulting in an average reduction of 14.7% in annual PV power generation. Optimal installation angle could yield approximately a 4.8% improvement compared to common installation angles. The study also explores the application of snow removal agents, which could potentially increase PV generation by 0.1–2.3%. Additionally, the new PV installation angle successfully captures the impact of the local weather changes on PV power generation, potentially serving as a bridge between climate change adaptation and future PV power generation endeavors.

Place, publisher, year, edition, pages
Elsevier BV , 2024. Vol. 359, article id 122690
Keywords [en]
High-latitude region, Optimal PV installation angle, Snow condition, Snow-PV yield model, Weather big data
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:kth:diva-344017DOI: 10.1016/j.apenergy.2024.122690ISI: 001170659600001Scopus ID: 2-s2.0-85185176041OAI: oai:DiVA.org:kth-344017DiVA, id: diva2:1841387
Note

QC 20240229

Available from: 2024-02-28 Created: 2024-02-28 Last updated: 2025-04-17Bibliographically approved
In thesis
1. Decentralized PV systems in Sweden: Techno-economic analysis with a case study of Stockholm
Open this publication in new window or tab >>Decentralized PV systems in Sweden: Techno-economic analysis with a case study of Stockholm
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Photovoltaic (PV) systems could be a promising option for accelerating sustainable transition in the power sector. However, it is not straightforward to implement solar PV in Sweden. While the huge gap between current and desired solar capacity generates great opportunities for solar PV technologies, the challenges arise regarding accurate performance prediction, optimization of sizing and installation, optimization for high latitude regions and integration with other technologies. This study focuses on a multi-dimensional probe into the potential and feasibility of PV systems in Sweden with a case study of Stockholm. The techno-economic potential of PV systems is evaluated regarding weather, space, infrastructure, operation configuration and economics. The results reveal the technical and economic feasibility of PV systems in Swedish contexts, despite limitations on existing infrastructure. The research highlights the significant PV generation loss due to snow conditions. The annual electricity generation loss is found to be 14.7%, which is greater than most prior research findings. Regarding this significant snow loss, bifacial PV can reduce snow-induced PV generation losses by up to 6 percentage points under heavy snow conditions. It also outperforms monofacial PV with lower levelized cost of electricity (LCoE) and shorter payback year in Sweden. Wall-mounted PV could also be an alternative. Compared to fixed-tilt PV, wall-mounted PV can achieve comparable annual benefits due to higher generation during the snow season when the electricity price is rather high. Future projections indicate an anticipated increase in PV generation by approximately 5% compared to historical periods. The change in PV generation is expected to be relatively minor during future periods, with an estimated variation of less than 30 kWh/kWp by 2100. Additionally, an optimal tilt angle has been determined for Sweden, applicable across all cities, which could enhance PV generation by 3-6% compared to the common installation angle.

Abstract [sv]

Solceller (PV) kan vara ett lovande alternativ för att påskynda en hållbar omställning inom kraftsektorn. Det är dock inte okomplicerat att implementera solceller i Sverige. Medan det enorma gapet mellan nuvarande och önskad solkapacitet genererar stora möjligheter för solcellstekniker, uppstår utmaningarna när det gäller exakt prestandaförutsägelse, optimering av dimensionering och installation, optimering för regioner med hög latitud och integration med andra teknologier. Denna studie fokuserar på en flerdimensionell undersökning av potentialen och genomförbarheten av solcellssystem i Sverige med en fallstudie av Stockholm. Den tekniska-ekonomiska potentialen hos PV-system utvärderas med avseende på väder, utrymme, infrastruktur, driftkonfiguration och ekonomi. Resultaten visar den tekniska och ekonomiska genomförbarheten av solcellssystem i svenska sammanhang, trots begränsningar av befintlig infrastruktur. Forskningen belyser den betydande förlusten av PV-generering på grund av snöförhållanden. De årliga elproduktionsförlusterna visar sig vara 14,7 %, vilket är större än de flesta tidigare forskningsrön. När det gäller denna betydande snöförlust kan bifacial PV minska snöinducerade PV-genereringsförluster med upp till 6 procentenheter under tunga snöförhållanden. Den överträffar också monofacial PV med lägre utjämnad elkostnad (LCoE) och kortare återbetalningsår i Sverige. Väggmonterad PV kan också vara ett alternativ. Jämfört med PV med fast lutning kan väggmonterad PV uppnå jämförbara årliga fördelar på grund av högre produktion under snösäsongen när elpriset är ganska högt. Framtida prognoser indikerar en förväntad ökning av solcellsproduktionen med cirka 5 % jämfört med historiska perioder. Förändringen i PV-generering förväntas vara relativt liten under framtida perioder, med en uppskattad variation på mindre än 30 kWh/kWp år 2100. Dessutom har en optimal lutningsvinkel bestämts för Sverige, tillämplig över alla städer, vilket skulle kunna öka PV-genereringen med 3–6 % jämfört med den vanliga installationsvinkeln.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. p. xxii, 112
Series
TRITA-ITM-AVL ; 2025:16
Keywords
Photovoltaic, Techno-economic analysis, Snow-loss model, climate change, Swedish contexts, Solceller, Teknoekonomisk analys, Snöförlustmodell, klimatförändringar, svenska sammanhang
National Category
Energy Systems
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-362565 (URN)978-91-8106-262-5 (ISBN)
Public defence
2025-05-15, Kollegiesalen / https://kth-se.zoom.us/j/68360743311, Brinellvägen 8, Stockholm, 09:30 (English)
Opponent
Supervisors
Available from: 2025-04-17 Created: 2025-04-17 Last updated: 2025-05-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ruan, TianqiTopel, MonikaLaumert, BjörnWang, Wujun

Search in DiVA

By author/editor
Ruan, TianqiTopel, MonikaLaumert, BjörnWang, Wujun
By organisation
Heat and Power Technology
In the same journal
Applied Energy
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 191 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf