kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Use of Model Cellulose Materials for Studying Molecular Interactions at Cellulose Interfaces
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. (Fibre Technology)ORCID iD: 0000-0002-3184-3532
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. RISE Research Institute of Sweden, SE-114 86 Stockholm, Sweden.ORCID iD: 0000-0002-0999-6671
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.ORCID iD: 0000-0002-5444-7276
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-8622-0386
2023 (English)In: ACS Macro Letters, E-ISSN 2161-1653, Vol. 12, no 11, p. 1530-1535Article in journal (Refereed) Published
Abstract [en]

Despite extensive research on biobased and fiber-basedmaterials, fundamental questions regarding the molecular processesgoverning fiber−fiber interactions remain unanswered. In this study, weintroduce a method to examine and clarify molecular interactions withinfiber−fiber joints using precisely characterized model materials, i.e.,regenerated cellulose gel beads with nanometer-smooth surfaces. Byphysically modifying these materials and drying them together to createmodel joints, we can investigate the mechanisms responsible for joiningcellulose surfaces and how this affects adhesion in both dry and wet statesthrough precise separation measurements. The findings reveal a subtlebalance in the joint formation, influencing the development ofnanometer-sized structures at the contact zone and likely inducingbuilt-in stresses in the interphase. This research illustrates how model materials can be tailored to control interactions betweencellulose-rich surfaces, laying the groundwork for future high-resolution studies aimed at creating stiff, ductile, and/or tough jointsbetween cellulose surfaces and to allow for the design of high-performance biobased materials.

Place, publisher, year, edition, pages
American Chemical Society (ACS) , 2023. Vol. 12, no 11, p. 1530-1535
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:kth:diva-344919DOI: 10.1021/acsmacrolett.3c00578ISI: 001096724800001PubMedID: 37910654Scopus ID: 2-s2.0-85178324088OAI: oai:DiVA.org:kth-344919DiVA, id: diva2:1848537
Funder
Knut and Alice Wallenberg FoundationStora Enso
Note

QC 20240404

Available from: 2024-04-03 Created: 2024-04-03 Last updated: 2024-04-05Bibliographically approved
In thesis
1. Fundamentals of Interactions between Cellulose Materials and its Implications on Properties of Fibrous Networks
Open this publication in new window or tab >>Fundamentals of Interactions between Cellulose Materials and its Implications on Properties of Fibrous Networks
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fundamental research plays a pivotal role in the development of sustainable solutions that benefit both our environment and everyday lives. Cellulose, as an abundant and renewable resource, holds immense potential for sustainable applications. However, navigating the complexities of molecular and supramolecular structure of cellulose poses significant challenges in harnessing its full potential. By delving into fundamental research, we aim to uncover the underlying mechanisms governing cellulose interactions, paving the way for innovative advancements in sustainable material development.This thesis uncovers the intricate relationship between fundamental research and applied methodologies by showing how molecular contact and structure at the interface of cellulose-rich materials will control the development of the macroscopic mechanical properties of networks from cellulose-rich fibres. The study encompasses various facets, ranging from the development of model materials for studying interfacial interactions to the preparation of fibrous networks with tailored properties.In the initial part of the work the research delves into the development of model materials to investigate interactions at smooth interfaces of regenerated cellulose. The study reveals the crucial role of the making and breaking of cellulose interface, or sometimes interphase, in the development of adhesive joints. Experimental findings demonstrate how chemical additives influence the interactions between cellulose surfaces, thereby modulating the structural and adhesive properties at the interface. Furthermore, by utilizing model materials, insights are gained into fibre-fibre interactions and the influence of surface treatments on network formation and mechanical performance. Lastly, the research focused on investigating the preparation of fibrous networks at different densities and amount of adsorbed additives, providing a comprehensive understanding of how network density and composition affect mechanical properties of the networks.This work not only exemplifies a synergistic approach, where fundamental insights into molecular contacts and interface structures are translated into practical applications for enhancing macroscopic properties but also highlights the importance of integrating fundamental and applied methodologies in molecular engineering, offering novel strategies for advancing sustainable paper production practices and contributing to the attainment of sustainable development goals.

Abstract [sv]

Grundläggande forskning spelar naturligtvis en avgörande roll i utvecklingen av hållbara materiallösningar och processer som gynnar både vår miljö och vårt vardagsliv. Cellulosa, som är en förnyelsebar och rikligt tillgänglig råvara, har också en enorm användnings potential i olika typer av hållbara material. Cellulosan har dock en avancerad och komplicerad molekylär och över molekylärstruktur och det är därför svårt att till fullo utnyttja den inneboende potentialen hos denna fascinerande råvara. Genom att fördjupa oss i och klarlägga de molekylära mekanismer som ligger till grund för växelverkan mellan cellulosarika ytor har vi skapat en grundförutsättning för att kunna utnyttja cellulosans inneboende egenskaper i olika typer av fiberbaserade nätverk . Resultaten i avhandlingen understryker den komplicerade och användbara kopplingen som finns mellan grundläggande förståelse och praktiska tillämpningar genom att visa hur den molekylära kontakten och strukturen i gränsytan mellan två cellulosa-rika ytor kommer att kontrollera de makroskopiska egenskaperna hos nätverk ifrån cellulosa rika fibrer. Studierna i avhandlingen omfattar olika aspekter, allt ifrån utvecklingen av väldefinierade och nm-jämna modellmaterial, för att studera molekylära växelverkai gränsytan mellan två cellulosa ytor, till framställningen av fibrösa nätverk med skräddarsydda egenskaper.I den första delen av arbetet har fokus legat på att utveckla väl karakteriserade modellmaterial och väldefinierade metoder för att klarlägga växelverkan i gränsytan eller gränsfasen mellan två cellulosa ytor. Resultaten visar också hur tillsats kemikalier påverkar växelverkan mellan cellulosa ytor och hur valet av kemikalier kan användas för att styra de strukturella och adhesiva egenskaperna hos gränsytan. Genom att använda våra modellmaterial har det också varit möjligt att bättre förstå de grundläggande mekanismerna som kontrollerar fiber-fiberväxelverkningar och därigenom hur tillsatskemikalier eller fibermodifieringar påverkar bildandet av en fiber/fiberfog och hur det i sin tur kontrollerar de makroskopiska mekaniska egenskaperna hos fibernätverket. I den sista delen av arbetet undersöktes hur olika mängder av fysikaliskt adsorberade styrkekemikalier och nätverks densiteter påverkar slutegenskaperna hos fibernätverk ifrån olika typer av fibrer. Resultaten visar att tillsatskemikalierna fortfarande har relativt sett stor positiv påverkan på de mekaniska egenskaperna hos nätverken, trots höga densiteter, vilket igen understryker vikten att klarlägga molekylära växelverkningar i gränsytan mellan fibrerna i ett fibernätverk.Sammantaget visar detta arbete inte bara hur grundläggande insikter om molekylära växelverkningar och gränsytsstrukturer har direkta praktiska tillämpningar för att förbättra makroskopiska egenskaper hos fibernätverk, utan det betonar också vikten av att integrera grundläggande och tillämpade metoder för skapa nya eller förbättrade biobaserade och recirkulerbara material.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 59
Series
TRITA-CBH-FOU ; 2024:15
Keywords
Cellulose interactions, model materials, adhesive properties, chemical additives, fibre network.
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-345069 (URN)978-91-8040-900-1 (ISBN)
Public defence
2024-05-03, F3, Lindstedtsvägen 26 & 28, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2024-04-08

Available from: 2024-04-08 Created: 2024-04-05 Last updated: 2024-05-24Bibliographically approved

Open Access in DiVA

fulltext(6089 kB)258 downloads
File information
File name FULLTEXT01.pdfFile size 6089 kBChecksum SHA-512
1634320c135f0a9adabcb9e8a81691ac7d1b5b2df3691d9e3ad9d383b6f1f039a026ab5f8972cf67b5708bb6d1e81a6e5aa58d314e1d90bcfefe58544f76508b
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Asta, NadiaReid, Michael S.Pettersson, TorbjörnWågberg, Lars

Search in DiVA

By author/editor
Asta, NadiaReid, Michael S.Pettersson, TorbjörnWågberg, Lars
By organisation
Fibre TechnologyWallenberg Wood Science Center
In the same journal
ACS Macro Letters
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 258 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 358 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf