The properties of hydrated nanocellulose network structures
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Long, slender cellulose nanofibrils (CNF) are unique with their high axial modulus, small diameter, high flexibility, and the possibility of chemical tailoring of, among other things, their surface charge density. The objective of this work has been to elucidate how the hydrogel network properties and how their related deformation mechanisms depend on CNF properties, concentration, and chemical environment. In addition, the influence of CNF characteristics on the formation of the structure and properties of isotropic hydrogels, anisotropic hydrogels, and aerogels has been studied.
This was done by combining theoretical models describing the CNF network's topology and mechanics with high-resolution experiments to validate the theoretical models. Furthermore, the properties of the fibrils have been characterized in detail and linked to the material properties of materials formed from the fibrils. Finally, the CNF networks in this work have been functionalized in two different ways. In the first case, a flow channel was created within the hydrogel network at extremely low CNF concentrations, that could be surface treated with a Layer-by-layer (LbL) methodology with a consecutive addition of oppositely charged polyelectrolytes/nanoparticles to add new functionalities to the channels. Secondly, wet stable aerogels, prepared at higher concentrations of CNFs, were treated using the LbL methodology to adjust the aerogels' surface structure and surface energy, thereby controlling the liquid spreading rate properties of the formed networks.
The most important findings in this work are that CNF network topology and network mechanics can be described using theoretical, rather non-complicated, elastoplastic models. Furthermore, at lower concentrations of CNFs, the network structure is formed in a more organized way, meaning that the fibrils have the time and freedom to seek their optimal contact points during the network formation from a thermodynamic free energy point of view. It has also been shown that the low-density, wet fibrillar network structures formed by neutralizing the charges of the fibrils deform by sliding in fibril/fibril contacts upon straining the network structure above a critical stress. These fibril/fibril contacts are also shown to be re-established when the stress is released, provided that the networks have not been subjected to a macroscopic collapse. Finally, these cellulose networks show great potential for further functionalization using the LbL modification methodology.
Abstract [sv]
Långa, smala cellulosananofibriller (CNF) är unika med sin höga axiella E-modul, låga diameter, höga flexibilitet och stora möjlighet till kemisk modifiering som bland annat använts för att styra fibrillernas ytladdningstäthet. Syftet med detta arbete har varit att klarlägga hur egenskaperna hos hydrogeler, framställda av nanofibriller, och dess deformationsmekanismer, kan kopplas till olika grundläggande CNF-egenskaper, koncentration och kemisk miljö. Dessutom har vi studerat inverkan av hur CNF-egenskaperna påverkar den bildade nätverksstrukturen och hur de påverkar de slutliga egenskaperna hos isotropa- och anisotropa hydrogeler och aerogeler som formats ifrån de olika fibrillslagen.
Den strategi som användes, och visade sig mycket framgångsrik, för att nå dessa mål, var att kombinera teoretiska modeller som beskriver CNF-nätverkets topologi och mekanik med specialdesignade experiment för att validera de teoretiska modellerna. Vidare har ett omfattande arbete lagts ned på att karakterisera fibrillernas kemiska, strukturella och morfologiska egenskaper och att koppla dessa till de funktionella materialegenskaperna hos de material som har tillverkats ifrån dessa fibriller. Slutligen har de färdiga CNF-nätverken funktionaliserats på två olika sätt. I det första fallet skapades en stabil flödeskanal i ett hydrogelnätverk, som preparerats vid extremt låg CNF-koncentration, och det visade sig vara möjligt att ytbehandla denna kanal med en lager för lager (LbL) metod där motladdade polyelektrolyter och/eller nanopartiklar användes för att tillföra nya egenskaper till kanalen. I det andra fallet behandlades förtillverkade, våtstabila aerogeler, som preparerats vid högre koncentration av CNF, med en LbL-behandling för att kontrollera ytstruktur och ytkemi hos aerogelerna, och att därigenom kontrollera vätskespridningshastigheten hos nätverken.
De viktigaste resultaten i detta arbete är att CNF-nätverkets topologi och nätverksmekanik kan beskrivas med hjälp av relativt okomplicerade teoretiska elastoplastiska modeller. Vidare, har det varit möjligt att visa att vid lägre CNF koncentrationer så bildas nätverksstrukturen på ett mer organiserat sätt, vilket innebär att fibrillerna har tid och friheten att söka sina kontaktpunkter under nätverksbildningen för att nå en optimal struktur utifrån ett termodynamiskt fritt energiperspektiv. Det har också visats att den våta fibrillära nätverksstrukturen hos hydrogelerna deformeras genom att fibrillkontakterna börjar glida vid en pålagd spänning på nätverksstrukturen som överskrider en viss gränsnivå och att fibrillkontakterna återbildas när den pålagda spänningen tas bort. Detta förutsatt att nätverken inte utsatts för en makroskopisk kollaps. Slutligen har vi lyckats visa hur det är möjligt att funktionalisera både hydrogeler och arogeler med hjälp av den så kallade LbL metoden för att skapa nya egenskaper hos nätverken.
Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. , p. 78
Series
TRITA-CBH-FOU ; 2024:18
Keywords [en]
Cellulose nanofibrils, Colloidal interactions, colloidal gels, network structure, fibrillar network models
Keywords [sv]
Cellulosa nanofibriller, Kolloidala interaktioner, Kolloidala geler, nätverksstruktur, fibrillära nätverksmodeller
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-346029ISBN: 978-91-8040-919-3 (print)OAI: oai:DiVA.org:kth-346029DiVA, id: diva2:1855139
Public defence
2024-05-24, F3 (Flodis),, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation
Note
QC 2024-04-30
Embargo godkänt av skolchef Amelie Eriksson Karlström via e-post 2024-04-18.
2024-04-302024-04-292024-05-08Bibliographically approved
List of papers