kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Iterative addition of parallel non-local effects to full wave ICRF finite element models in axisymmetric tokamak plasmas
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0002-3280-2361
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0002-7142-7103
Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany.ORCID iD: 0000-0002-0578-9333
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0003-4343-6325
2024 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 64, no 6, article id 066017Article in journal (Refereed) Published
Abstract [en]

The current response of a hot magnetized plasma to a radio-frequency wave is non-local, turning the electromagnetic wave equation into an integro-differential equation. Non-local physics gives rise to wave physics and absorption processes not observed in local media. Furthermore, non-local physics alters wave propagation and absorption properties of the plasma. In this work, an iterative method that accounts for parallel non-local effects in 2D axisymmetric tokamak plasmas is developed, implemented, and verified. The iterative method is based on the finite element method and Fourier decomposition, with the advantage that this numerical scheme can describe non-local effects while using a high-fidelity antenna and wall representation, as well as limiting memory usage. The proposed method is implemented in the existing full wave solver FEMIC and applied to a minority heating scenario in ITER to quantify how parallel non-local physics affect wave propagation and dissipation in the ion cyclotron range of frequencies (ICRF). The effects are then compared to a reduced local plane wave model, both verifying the physics implemented in the model, as well as estimating how well a local plane wave approximation performs in scenarios with high single pass damping. Finally, the new version of FEMIC is benchmarked against the ICRF code TORIC.

Place, publisher, year, edition, pages
IOP Publishing , 2024. Vol. 64, no 6, article id 066017
Keywords [en]
FEMIC, Fusion, ICRH, tokamak
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:kth:diva-346044DOI: 10.1088/1741-4326/ad3c51ISI: 001210797700001Scopus ID: 2-s2.0-85192217680OAI: oai:DiVA.org:kth-346044DiVA, id: diva2:1855473
Note

QC 20240502

Available from: 2024-05-01 Created: 2024-05-01 Last updated: 2024-12-21
In thesis
1. Spatial dispersion in finite element models for ion cyclotron resonance heating: Theory and applications for toroidal plasmas
Open this publication in new window or tab >>Spatial dispersion in finite element models for ion cyclotron resonance heating: Theory and applications for toroidal plasmas
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nuclear fusion can provide large amounts of energy from earth-abundant elements,with no carbon emissions and little radioactive waste. For the nuclei to fuse under earth-relevant conditions, temperatures in excess of 100 000 000 °C are needed. At these temperatures, the fuel is in a plasma state. A common method to heat the plasma is ion cyclotron resonance heating (ICRH), where radiofrequency waves are launched from an antenna on the vessel wall into the plasma to resonate with the gyrating ions. Wave propagation and dissipation in hot magnetized plasmas is a nonlocal process, where the plasma response at a given point depends on the particles' cumulative acceleration along their orbits. To quantify how the plasma is heated, numerical simulations are required. This thesis aims to provide a numerical framework that can simulate the coupling of the wave from the antenna to the plasma, the wave propagation and dissipation inside the plasma, as well as the acceleration of individual ions and how they deposit their energy in the plasma. 

To this end, an iterative scheme that adds nonlocal effects to an otherwise local finite element (FE) model is developed. FE models are suitable for modeling irregular geometries and wave coupling through the cold scrape-off layer plasma, but not necessarily the hot core plasma. Examples of nonlocal effects that are added iteratively are mode conversion from the fast magnetosonic wave to the ion Bernstein wave (IBW) and up- and downshift of the parallel wavenumber. Further, the wave solver is coupled to a Fokker-Planck solver that evaluates the effect of ICRH on the ion distribution function. The models presented in this thesis are in 1D or 2D axisymmetry, but are not conceptually different from a generalization to 3D.

Abstract [sv]

Kärnfusion kan producera stora mängder energi från vanligt förekommande grundämnen på jorden utan att släppa ut koldioxid, och ger endast upphov till små mängder radioaktivt avfall. För att atomkärnor ska slås samman under förhållanden som är relevanta för jorden krävs temperaturer som överstiger 100 000 000 °C. Vid dessa temperaturer befinner sig bränslet i ett plasmatillstånd. En vanlig metod för att värma plasman är jon-cyclotronresonans-uppvärmning (ICRH), där radiovågor skickas från en antenn på kärlets vägg in i plasmat för att resonera med de roterande jonerna. Vågutbredning och dissipation i varma magnetiserade plasman är en ickelokal effekt, där plasmats svar i en given punkt beror på partiklarnas ackumulerade acceleration längs deras banor. För att kvantifiera hur ett plasma värms upp krävs numeriska simuleringar. Målet med denna avhandling är att tillhandahålla ett numeriskt ramverk för simulering av koppling av vågen från antennen till plasmat, vågutbredning och dissipation inuti plasmat, samt accelerationen av enskilda partiklar och hur de deponerar sin energi i plasmat.

För att uppnå detta har en iterativ metod som lägger till ickelokala effekter till en i övrigt lokal modell baserad på finita elementmetoden utvecklats. Den finita elementmetoden är lämplig för att modellera oregelbundna geometrier och vågkoppling genom det kalla randplasmat, men inte det varma plasmat i mitten av maskinen. Exempel på ickelokala effekter som läggs till iterativt är modkonvertering från den snabba magnetosoniska vågen till jon-Bernstein-vågen, och upp- och nedskiftet av det parallella vågtalet. Dessutom kopplas våglösaren till en Fokker-Planck-lösare som utvärderar effekten som ICRH har på jonernas fördelningsfunktion. Modellerna som presenteras i avhandlingen är i 1D eller 2D och rotationssymmetriska, men skiljer sig inte konceptuellt från en generalisering till 3D.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. xi, 71
Series
TRITA-EECS-AVL ; 2025:9
Keywords
Fusion, Plasma physics, Plasma heating, Tokamak, Ion cyclotron resonance heating, Spatial dispersion
National Category
Fusion, Plasma and Space Physics
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-357971 (URN)978-91-8106-160-4 (ISBN)
Public defence
2025-01-29, https://kth-se.zoom.us/j/67880732648, F3, Lindstedtsvägen 26, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20241230

Available from: 2024-12-30 Created: 2024-12-21 Last updated: 2025-01-20Bibliographically approved

Open Access in DiVA

Zaar_2024_Nucl_Fusion_64_066017(1795 kB)93 downloads
File information
File name FULLTEXT01.pdfFile size 1795 kBChecksum SHA-512
97eccb682732600314a9d56a1af0fabbfc2b50bfebad0eff7de62bf3fe597c1826bcb9bca788059ddb8a5dd5376192dd74dd3e553be5766f709cfa25e9784123
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Zaar, BjörnJonsson, ThomasVallejos, Pablo

Search in DiVA

By author/editor
Zaar, BjörnJonsson, ThomasBilato, RobertoVallejos, Pablo
By organisation
Electromagnetic Engineering and Fusion Science
In the same journal
Nuclear Fusion
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 93 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 273 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf