kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Antennas Based on Rotationally Symmetric Lenses for High-Frequency Wireless Applications
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering and Fusion Science.ORCID iD: 0000-0002-5338-1789
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis investigates lens antennas for future wireless applications. The aim is to provide robust and cost-effective antenna solutions with wide-angle beam steering capabilities. The wide-angle beam steering is obtained using rotationally symmetric inhomogeneous lenses, such as the Luneburg lens. The derivation of the inhomogeneous refractive index using geometrical optics is outlined. Parallel plate waveguide (PPW) lens antennas and volumetric lens antennas are investigated. 

The studied PPW lens antennas are designed to be robust to manufacturing and assembly errors while enabling a high radiation efficiency and wide-angle steering of a fan-shaped beam. The refractive index distribution is mimicked using quasi-periodic structures or by shaping the PPW. Specifically, two robust and cost-effective glide-symmetric quasi-periodic structures are proposed. First, glide-symmetric substrate-integrated holes (SIHs) are proposed, since they enable a larger PPW spacing compared to previously reported fully-metallic designs. This large PPW spacing translates into a robust antenna solution, and the SIH structure can be cost-effectively manufactured. The presence of the dielectric introduces losses, but it is shown that these added losses are sufficiently low for many applications at Ka-band. Secondly, a glide-symmetric perforated dielectric slab is proposed to enable an even larger PPW spacing. The slab is produced using additive manufacturing and it is shown that by arranging the perforations glide-symmetrically, a wider range of effective refractive indices can be accurately realized. Again, it is shown that the added losses due to the dielectric are sufficiently low for practical applications at Ka-band. Fully-metallic (and therefore highly efficient) PPW lens antennas can be based on geodesic lenses. These lenses do not require the realization of any small features and can therefore be robust. A geodesic lens antenna demonstrator at V-band is presented, and techniques of reducing the sensitivity to manufacturing errors are proposed. These techniques are later used in the design of a geodesic lens antenna with reduced gain variation within the beam steering range compared to the reference works. This geodesic lens is based on the generalized Luneburg lens. Providing a low gain variation in the steering range ensures a good quality of service to all end users. 

Additive manufacturing provides attractive opportunities for the realization of volumetric inhomogeneous lens antennas capable of producing directive pencil beams that can be steered in a wide angular range. However, the effective refractive index range of quasi-periodic dielectric structures is often limited by the smallest realizable geometrical detail, and the reported volumetric inhomogeneous lenses are often truncated, which impacts their focusing properties. In this thesis, the impact of the lattice arrangements is discussed and it is demonstrated that by using highly symmetric lattice arrangements, the realizable effective refractive index range can be increased. Furthermore, a new lens, accounting for the manufacturing constraints, is also proposed. This lens operates similarly to the Luneburg lens, but it has a refractive index distribution that can be tuned to alleviate the manufacturing.

Abstract [sv]

Denna avhandling undersöker linsantenner för framtida trådlösa tillämpningar. Målet är att tillhandahålla robusta och kostnadseffektiva antennlösningarmed bred strålstyrningsförmåga. Den breda strålstyrningen uppnås med hjälp av rotationsymmetriska inhomogena linser, såsom Luneburg-linsen. Härledningen av det inhomogena brytningsindexet med geometrisk optik beskrivs. Linsantenner implementerade i planvågledare (PPW) och volymetriskalinsantenner undersöks.

De studerade PPW-linsantennerna är konstruerade för att vara robusta mot tillverknings- och monteringsfel samtidigt som de möjliggör hög strålningseffektivitet och strålstyrning i ett brett vinkelspann. Linsens brytningsindex realiseras med hjälp av kvasiperiodiska strukturer eller genom att modifiera vågledaren. Specifikt föreslås två robusta och kostnadseffektiva glidsymmetriska kvasiperiodiska strukturer. För det första används glidsymmetriska substratintegrerade hål (SIHs) för att möjliggöra ett större PPW-avstånd jämfört med tidigare rapporterade helt metalliska konstruktioner. Detta stora PPW-avstånd leder till en robust antennlösning, och SIH-strukturen kan tillverkas kostnadseffektivt. Närvaron av dielektrikat medför förluster, men det visar sig att dessa uppkomna förluster är tillräckligt låga för många tillämpningar i Ka-bandet. För det andra används en glidsymmetrisk perforerad dielektrisk skiva för att möjliggöra ett ännu större PPW-avstånd. Skivan tillverkas additivt genom att arrangera perforationerna glidsymmetriskt vilket möjliggör att fler effektiva brytningsindex kan realiseras. Återigen visas det att de tillkomna förlusterna på grund av dielektrikat är tillräckligt låga för praktiska tillämpningar i Ka-bandet. Helt metalliska (och högeffektiva) PPW-linsantenner kan baseras på geodesiska linser. Dessa linser kräver inte realisering av små detaljer och kan därför vara robusta. En demonstrator av en geodesisk linsantenn för V-bandet presenteras, och tekniker för att minska känsligheten för tillverkningsfel föreslås. Dessa tekniker används senare i designen av en geodesisk linsantenn med reducerad variation i antennförstärkningen inom strålstyrningsintervallet jämfört med referensverk i litteraturen. Denna geodesiska lins baseras på den generaliserade Luneburg-linsen.

Additiv tillverkning erbjuder attraktiva möjligheter för realisering av volymetriska inhomogena linsantenner som kan producera hög-direktiva strålar som kan styras över ett brett vinkelspann. Dock begränsas det realiserbara spannet av det effektiva brytningsindexet för kvasiperiodiska dielektriskastrukturer av den minsta realiserbara geometriska detaljen, och volymetriska inhomogena linser i litteraturen är ofta trunkerade, vilket påverkar deras fokuseringsegenskaper. I denna avhandling diskuteras inverkan av kristallstrukturen på det effektiva brytningsindexet, och det visas att genom att använda symmetriska kristallstrukturer kan fler effektiva brytningsindex realiseras. Dessutom föreslås en ny lins som tar hänsyn till tillverkningsbegränsningarna. Denna lins fungerar på ett liknande sätt som Luneburg-linsen, men den har ett brytningsindex som kan justeras för att lättare kunna tillverkas.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. , p. ix, 43
Series
TRITA-EECS-AVL ; 2024:49
Keywords [en]
Generalized Luneburg lens, lens antennas, virtual image lens
National Category
Telecommunications
Research subject
Telecommunication
Identifiers
URN: urn:nbn:se:kth:diva-346250ISBN: 978-91-8040-934-6 (print)OAI: oai:DiVA.org:kth-346250DiVA, id: diva2:1856772
Public defence
2024-06-10, F3, Lindstedtsvägen 26, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20240508

Available from: 2024-05-13 Created: 2024-05-08 Last updated: 2024-05-15Bibliographically approved
List of papers
1. Experimental Validation of a Metasurface Luneburg Lens Antenna Implemented With Glide-Symmetric Substrate-Integrated Holes
Open this publication in new window or tab >>Experimental Validation of a Metasurface Luneburg Lens Antenna Implemented With Glide-Symmetric Substrate-Integrated Holes
2021 (English)In: IEEE Antennas and Wireless Propagation Letters, ISSN 1536-1225, E-ISSN 1548-5757, Vol. 20, no 5, p. 698-702Article in journal (Refereed) Published
Abstract [en]

In this letter, we present the experimental validation of a K-a-band Luneburg lens antenna based on a novel cost-effective metasurface. The metasurface is composed of a parallel plate waveguide (PPW) loaded with quasi-periodic inclusions in both conductors. The inclusions are square holes printed on a substrate, with vias placed around the holes. The vias connect the printed layer of the substrate to the ground. This configuration is named substrate-integrated hole (SIH). It is demonstrated that the SIH metasurface can obtain a higher effective refractive index, compared to the conventional holey metasurface. To further increase the effective refractive index, the SIHs in the two conductors of the PPW are glide-symmetrically arranged. The refractive index distribution of the Luneburg lens is realized by locally tuning the dimensions of the SIHs. The lens is fed with 11 waveguide feeds with an angular separation of 10 degrees. Thus, the antenna can steer its radiation in a 100 degrees angular range. A flare is integrated with the PPW to match the antenna to the free-space impedance. Since the wave propagates mainly in the PPW air gap, the dielectric losses are low. The measured radiation efficiency of the antenna is roughly 80%.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2021
Keywords
Glide symmetry, Luneburg lens antenna, substrate-integrated hole (SIH)
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-296405 (URN)10.1109/LAWP.2021.3060283 (DOI)000647382300014 ()2-s2.0-85101743807 (Scopus ID)
Note

QC 20210614

Available from: 2021-06-14 Created: 2021-06-14 Last updated: 2024-05-08Bibliographically approved
2. Two-Dimensional Glide-Symmetric Dielectric Structures for Planar Graded-Index Lens Antennas
Open this publication in new window or tab >>Two-Dimensional Glide-Symmetric Dielectric Structures for Planar Graded-Index Lens Antennas
Show others...
2021 (English)In: IEEE Antennas and Wireless Propagation Letters, ISSN 1536-1225, E-ISSN 1548-5757, Vol. 20, no 11, p. 2171-2175Article in journal (Refereed) Published
Abstract [en]

In this letter, we propose and study a 2-D glide-symmetric dielectric periodic structure. We demonstrate that glide symmetry broadens the bandwidth of operation and achieves lower effective refractive indices when compared to non-glide configurations. These two properties are beneficial for producing graded-index lens antennas. To demonstrate the potential of the proposed unit cell, we designed a Luneburg lens operating in the K- and K-a-bands. The lens was manufactured with conventional additive manufacturing and it has a potential use for future wireless communications given its low-cost and low-profile.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2021
Keywords
Additive manufacturing, dielectric lens antennas, glide symmetry, Luneburg lens
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-305769 (URN)10.1109/LAWP.2021.3092169 (DOI)000719561800023 ()2-s2.0-85112065139 (Scopus ID)
Note

QC 20211206

Available from: 2021-12-06 Created: 2021-12-06 Last updated: 2024-05-08Bibliographically approved
3. V-Band Fully Metallic Geodesic Luneburg Lens Antenna
Open this publication in new window or tab >>V-Band Fully Metallic Geodesic Luneburg Lens Antenna
Show others...
2023 (English)In: IEEE Transactions on Antennas and Propagation, ISSN 0018-926X, E-ISSN 1558-2221, Vol. 71, no 2, p. 1965-1970Article in journal (Refereed) Published
Abstract [en]

Antennas in emerging millimeter-wave (mm-wave) applications are often required to have low losses and produce a steerable directive beam. These properties are achievable with fully metallic geodesic Luneburg lens antennas. In this communication, we report the first experimental verification of a geodesic Luneburg lens antenna in the V-band. The designed lens antenna is fed with 13 waveguides providing beam switching capability in a 110?degrees range. The lens is implemented in the parallel plate waveguide (PPW) technology. The antenna is manufactured in two pieces, and a tolerance analysis indicates that gaps between the pieces can cause a severe performance degradation. Based on this tolerance analysis, two measures are taken to alleviate the manufacturing tolerances for the prototype. First, electromagnetic band gap (EGB) structures are placed around the feeding waveguides. Second, the electrical contact between the two pieces is improved in critical regions. Two prototypes are manufactured, one without and one with the extra measures implemented. The measured radiation patterns of the prototype without these measures have high side lobes and low realized gain compared with the simulation. The measurements of the robust version of the prototype agree well with the simulations and demonstrate the applicability of geodesic Luneburg lens antennas for applications in the V-band.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Lenses, Antennas, Directive antennas, Antenna measurements, Refractive index, Tolerance analysis, Prototypes, Fully metallic antenna, geodesic lens, Luneburg lens antenna, multiple beam antenna, V-band
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-326874 (URN)10.1109/TAP.2022.3228690 (DOI)000966081300001 ()2-s2.0-85146231922 (Scopus ID)
Note

QC 20230630

Available from: 2023-05-15 Created: 2023-05-15 Last updated: 2024-05-08Bibliographically approved
4. Additively Manufactured Half-Gutman Lens Antenna for Mobile Satellite Communications
Open this publication in new window or tab >>Additively Manufactured Half-Gutman Lens Antenna for Mobile Satellite Communications
2023 (English)In: IEEE Antennas and Wireless Propagation Letters, ISSN 1536-1225, E-ISSN 1548-5757, Vol. 22, no 4, p. 759-763Article in journal (Refereed) Published
Abstract [en]

In this letter, we present an additively manufactured half-Gutman lens antenna operating at 30 GHz. The hemispherical lens allows for a compact beamformer while maintaining the wide scanning capabilities of Gutman lenses. This solution further enables to better integrate the feed system when compared to a more conventional half-Luneburg lens antenna design as the focal arc is moved inside the lens. The graded-index of the lens is implemented with a periodic structure arranged in a body-centred cubic (BCC) lattice. We demonstrate that the BCC structure provides attractive properties for the design of inhomogeneous dielectric lenses. Importantly, the BCC structure can be used to alleviate the manufacturing constrains compared to conventional periodic structures. The lens is fed by a dielectric-loaded square waveguide. The proposed antenna produces a directive beam with a simulated and measured peak gain of 26.2 and 25.3 dBi. The antenna can steer its beam in a 50 degrees range in elevation with measured scan loss and sidelobe levels below1 dB and-10 dB, which agree with the simulated values. The measured cross polarization discrimination is better than 20 dB. The proposed antenna is intended for the ground segment of the emerging low-Earth-orbit satellite communication applications.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Additive manufacturing, body-centred cubic (BCC) lattice, Gutman lens, satellite communications, Wigner-Seitz cell
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-326873 (URN)10.1109/LAWP.2022.3224455 (DOI)000967399800019 ()2-s2.0-85144014984 (Scopus ID)
Note

QC 20230515

Available from: 2023-05-15 Created: 2023-05-15 Last updated: 2024-05-08Bibliographically approved
5. V-Band Geodesic Generalized Luneburg Lens Antenna with High Beam Crossover Gain
Open this publication in new window or tab >>V-Band Geodesic Generalized Luneburg Lens Antenna with High Beam Crossover Gain
Show others...
2023 (English)In: IEEE Transactions on Antennas and Propagation, ISSN 0018-926X, E-ISSN 1558-2221, Vol. 71, no 9, p. 7591-7596Article in journal (Refereed) Published
Abstract [en]

Quasi-optical beamformers provide attractive properties for antenna applications at millimeter-wave (mm-wave) frequencies. Antennas implemented with these beamformers have demonstrated wide-angle switching of directive beams, making them suitable as base station antennas for future communication networks. For these applications, it is essential to ensure a high beam crossover gain to provide a robust service to end users within the steering range. Here, we propose a geodesic generalized Luneburg lens antenna operating from 57 to 67 GHz that provides increased crossover gain compared to previously reported geodesic Luneburg lens antennas. The focal curve of the generalized Luneburg lens can be displaced from the beamformer, allowing for a higher angular resolution in the placement of the feed array along the focal curve. The lens is fed with 21 ridge waveguides with an angular separation of 5.1°, thus providing beam steering in a 102° range. The peak realized gain varies from 19 to 21 dBi throughout the steering and frequency ranges and the beam crossover gain is roughly 3 dB below the peak gain. The simulations are experimentally validated.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Generalized Luneburg lens, geodesic lens, lens antenna, multibeam antennas
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Telecommunications
Identifiers
urn:nbn:se:kth:diva-338563 (URN)10.1109/TAP.2023.3283138 (DOI)001169294600053 ()2-s2.0-85162629024 (Scopus ID)
Note

QC 20231107

Available from: 2023-11-07 Created: 2023-11-07 Last updated: 2024-05-08Bibliographically approved
6. Collimating Truncated Virtual Image Lens
Open this publication in new window or tab >>Collimating Truncated Virtual Image Lens
2024 (English)In: IEEE Transactions on Antennas and Propagation, ISSN 0018-926X, E-ISSN 1558-2221, Vol. 72, no 5, p. 3928-3937Article in journal (Refereed) Published
Abstract [en]

The Luneburg lens is of significant interest for microwave and optical devices due to its wide-angle focusing properties. However, the inhomogeneous refractive index of the lens is restrictive and can be difficult to realize, especially at high frequency (typically millimeter-waves and above). Here, we present an inhomogeneous lens referred to as the collimating truncated virtual image lens, which is derived as a combination of the recently proposed virtual image lens and a conventional extended hemispherical lens. We investigate the operation of the proposed lens and we demonstrate that it provides similar focusing properties as the Luneburg lens, but with a flexible refractive index profile. This flexibility can be used to alleviate the strict manufacturing constraints typically associated with the Luneburg lens. We validate the properties of the proposed lens with a demonstrator at millimeter-wave frequencies showing that an antenna based on the proposed lens can obtain similar directivity and sidelobe levels to those obtained in an ideal Luneburg lens antenna, while the proposed lens is easier to realize. The collimating truncated virtual image lens is attractive for instruments and antennas at high frequency.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-346249 (URN)10.1109/tap.2024.3376076 (DOI)001217104500021 ()2-s2.0-85188471669 (Scopus ID)
Funder
The European Space Agency (ESA), 4000125905/18/NL
Note

QC 20240508

Available from: 2024-05-08 Created: 2024-05-08 Last updated: 2024-07-23Bibliographically approved

Open Access in DiVA

sammanfattning(22109 kB)249 downloads
File information
File name SUMMARY01.pdfFile size 22109 kBChecksum SHA-512
9e25b3aaa43b15ace799fc5346240629b3989ab43f32fff4bf162c84ecee3eefc36090497fafeb7d7a01375e8dfc033dafac94ee81fc816da5db9cd4f6f6ef17
Type summaryMimetype application/pdf

Authority records

Zetterström, Oskar

Search in DiVA

By author/editor
Zetterström, Oskar
By organisation
Electromagnetic Engineering and Fusion Science
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2136 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf